3 research outputs found

    Impact of genetic ancestry and sociodemographic status on the clinical expression of systemic lupus erythematosus in American Indian-European populations

    No full text
    Artículo de publicación ISIObjective American Indian-Europeans, Asians, and African Americans have an excess morbidity from systemic lupus erythematosus (SLE) and a higher prevalence of lupus nephritis than do Caucasians. The aim of this study was to analyze the relationship between genetic ancestry and sociodemographic characteristics and clinical features in a large cohort of American Indian-European SLE patients. Methods A total of 2,116 SLE patients of American Indian-European origin and 4,001 SLE patients of European descent for whom we had clinical data were included in the study. Genotyping of 253 continental ancestry-informative markers was performed on the Illumina platform. Structure and Admixture software were used to determine genetic ancestry proportions of each individual. Logistic regression was used to test the association between genetic ancestry and sociodemographic and clinical characteristics. Odds ratios (ORs) were calculated with 95% confidence intervals (95% CIs). Results The average American Indian genetic ancestry of 2,116 SLE patients was 40.7%. American Indian genetic ancestry conferred increased risks of renal involvement (P < 0.0001, OR 3.50 [95% CI 2.63- 4.63]) and early age at onset (P < 0.0001). American Indian ancestry protected against photosensitivity (P < 0.0001, OR 0.58 [95% CI 0.44-0.76]), oral ulcers (P < 0.0001, OR 0.55 [95% CI 0.42-0.72]), and serositis (P < 0.0001, OR 0.56 [95% CI 0.41-0.75]) after adjustment for age, sex, and age at onset. However, age and sex had stronger effects than genetic ancestry on malar rash, discoid rash, arthritis, and neurologic involvement. Conclusion In general, American Indian genetic ancestry correlates with lower sociodemographic status and increases the risk of developing renal involvement and SLE at an earlier age.NIH P01-AR-49084 P60-AR-053308 R01-AR-052300 R21-AI-070304 K24-AR-002138 P60 2-AR-30692 UL1-RR-025741 P30-AR-053483 P30-RR-031152 P01-AI-083194 AR-43727 American Recovery and Reinvestment Act grant AR-058621 Centers of Biomedical Research Excellence (COBRE) grant 8 P20-GM-103456-09 National Center for Research Resources UL1-RR-025005 Alliance for Lupus Research Kirkland Scholar Award Federico Wilhelm Agricola Foundatio

    Transancestral mapping and genetic load in systemic lupus erythematosus

    No full text
    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (similar to 50% of these regions have multiple independent associations); these include 24 novel SLE regions (P < 5 x 10(-8)), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.We gratefully acknowledge the Alliance for Lupus Research for funding and support. The research was supported in part by awards from the Arthritis Research UK Special Strategic Award (ref. 19289) and from George Koukis (T.J.V.). In addition, the research was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London (T.J.V.). The work would not be possible without funding from the NIH grants AR049084 (RPK, EEB); the International Consortium on the Genetics of Systemic Lupus Erythematosus (SLEGEN) AI083194 (J.B.H.); CA141700, AR058621 Proyecto de Excelencia, Consejeria de Andalucia (M.E.A.R.); AR043814 and AR-065626 (B.P.T.); AR060366, MD007909, AI107176 (S.K.N.); AR-057172 (C.O.J.); RC2 AR058959, U19 A1082714, R01 AR063124, P30 GM110766, R01 AR056360 (P.M.G.); P60 AR053308 (L.A.C.), MUSC part is from UL1RR029882 (G.S.G., D.L.K.) and 5P60AR062755 (G.S.G., D.L.K., P.R.R.). Oklahoma Samples U19AI082714, U01AI101934, P30GM103510, U54GM104938 and P30AR053483 (J.A.J., J.M.G.); Northwestern P60 AR066464 and 1U54TR001018 (R.R.G.); This study was supported by the US National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health (NIH) under Award Numbers K01 AR067280 and P60 AR062755 (PSR); N01AR22265 (funded collection of APPLE samples) (LES) and the APPLE Investigators; R01AR43727, NIH AR 043727 and 069572 (M.P.); NIAMS/NIH P50-AR055503 (D.R.K.). We would like to also thank the RILITE foundation for financial support (C.D.L.). Additional funding for Immunochip genotyping was provided by Genentech.Peer reviewe
    corecore