3,350 research outputs found

    Prenatal exposure to methadone or buprenorphine: Early childhood developmental outcomes.

    Get PDF
    BACKGROUND: Methadone and buprenorphine are recommended to treat opioid use disorders during pregnancy. However, the literature on the relationship between longer-term effects of prenatal exposure to these medications and childhood development is both spare and inconsistent. METHODS: Participants were 96 children and their mothers who participated in MOTHER, a randomized controlled trial of opioid-agonist pharmacotherapy during pregnancy. The present study examined child growth parameters, cognition, language abilities, sensory processing, and temperament from 0 to 36 months of the child\u27s life. Maternal perceptions of parenting stress, home environment, and addiction severity were also examined. RESULTS: Tests of mean differences between children prenatally exposed to methadone vs. buprenorphine over the three-year period yielded 2/37 significant findings for children. Similarly, tests of mean differences between children treated for NAS relative to those not treated for NAS yielded 1/37 significant finding. Changes over time occurred for 27/37 child outcomes including expected child increases in weight, head and height, and overall gains in cognitive development, language abilities, sensory processing, and temperament. For mothers, significant changes over time in parenting stress (9/17 scales) suggested increasing difficulties with their children, notably seen in increasing parenting stress, but also an increasingly enriched home environment (4/7 scales). CONCLUSIONS: Findings strongly suggest no deleterious effects of buprenorphine relative to methadone or of treatment for NAS severity relative to not-treated for NAS on growth, cognitive development, language abilities, sensory processing, and temperament. Moreover, findings suggest that prenatal opioid agonist exposure is not deleterious to normal physical and mental development

    Cervicitis as a Clinical Indicator of Gonococcal and Chlamydial Infections in Pregnancy

    Get PDF
    Objective: We undertook the present study to attempt to apply clinical indicators predictive of cervical infection in nongravid populations with either Neisseria gonorrhoeae or Chlamydia trachomatis to our pregnant population and to determine the significance of the clinical diagnosis of “cervicitis.

    Improving the downstream processing of interferon alfa-2b using alternative purification platforms based on ionic liquids

    Get PDF
    Improvements on human life expectancy and the lack of effective therapies has led to an increment of chronic diseases, being the application of biopharmaceuticals an efficient strategy to mitigate this scenario. Among the current available biopharmaceuticals, the role of interferon α-2b (IFNα-2b) should be highlighted, as it has been marketed over 30 years with a considerable impact on the global therapeutic proteins market (Castro et al, Vaccines, 2021). IFN manufacturing requires the use of the recombinant DNA technology, involving two main stages, the upstream and downstream stages. The first includes recombinant protein production in a suitable host microorganism, such as Escherichia coli (Castro et al, Sep. Purif. Technol., 2020), while the second comprises protein recovery, isolation, purification and polishing. Due to the high demands of the pharmaceutical industry for products with high purity and biological activity, the downstream stage is responsible for the majority of the production costs of biopharmaceuticals (50–90%), often including time-consuming and multi-step processes. Therefore, there is an immediate need to develop more efficient, cost-effective, and sustainable protein purification methodologies. In this work, two ionic-liquid-(IL)-based strategies were investigated for the purification of IFNα-2b recombinantly produced from E. coli fermentation broth, namely as adjuvants in aqueous biphasic systems or as chromatographic ligands immobilized in solid materials. Overall, the obtained results demonstrate that by tailoring IL’s chemical structures, improved protein purification processes are obtained and that the secondary structure of proteins is preserved.publishe

    Employees’ feelings about more meetings: An overt analysis and recommendations for improving meetings

    Get PDF
    Purpose – The purpose of this paper is to identify how employees feel about having more meetings and what can be done to improve employees’ feelings about their work meetings. Design/methodology/approach – Data were obtained from three samples of working adults. The first was a convenience sample recruited by undergraduate students (n = 120), the second was a stratified random sample from a metropolitan area in the southern USA (n = 126), and the third was an internet-based panel sample (n = 402). Constant comparative analysis of responses to open-ended questions was used to investigate the overarching research questions. Findings – It is found that employees enjoy meetings when they have a clear objective, and when important relevant information is shared. Consistent with conservation of resources theory, most employees are unhappy with meetings when they reduce their work-related resources (e.g. meetings constrain their time, lack structure and are unproductive). Practical implications – The data suggest that meetings appear to be both resource-draining and resource-supplying activities in the workplace. Researchers and managers should consider overtly asking about how people feel about meetings, as a means of identifying areas for future research inquiry and targets for improvement in the workplace generally. Originality/value – The paper describes one of the few studies on meetings that ask the participants overtly what their feelings are regarding their workplace meetings. Additionally, the paper illustrates the usefulness of qualitative data analysis as a means for further understanding workplace activities viewing respondents as informants. Keywords United States of America, Employees behaviour, Employees attitudes, Employees participation, Meetings, Meeting demands, Qualitative research, Thematic analysi

    Sustainable ionic-liquid-based strategies for the downstream processing of interferon α-2b from Echerichia coli

    Get PDF
    Over the last decades, society has been facing an increment of chronic diseases due to the higher human life expectancy and the lack of efficient treatments for several pathologies. In this regard, biopharmaceuticals have become one of the most effective clinical treatments for a broad range of diseases, including cancer, metabolic and neurodegenerative disorders [1]. Among biopharmaceuticals, the role of interferons, particularly interferon α-2b (IFNα-2b), should be underlined, as they have been marketed for over 30 years with a considerable impact on the global therapeutic proteins market [2]. Usually based on the recombinant DNA technology, the manufacturing process of biopharmaceuticals encompasses two main stages: the upstream and downstream stages. Typically, the upstream phase includes recombinant protein production processes in a suitable host microorganism, such as Escherichia coli [3], while the general downstream processing of biopharmaceuticals comprises four stages - recovery, isolation, purification and polishing -, which are responsible for the majority of the production costs of biopharmaceuticals (50–90%) [3]. The downstream processing is a time-consuming and multi-step process, for which the development of cost-effective purification processes is mandatory to decrease their costs and environmental impact. In this context, two ionic-liquid-(IL)-based strategies were investigated in this work for the purification of IFNα-2b recombinantly produced from E. coli fermentation broth. ILs have been used as adjuvants in aqueous two-phase systems (ATPS) and applied in supported materials as alternative ligands. The obtained results demonstrate that ILs have a tailoring ability and contribute to the development of more effective and sustainable downstream processes of biopharmaceuticals.publishe

    Overview on protein extraction and purification using ionic-liquid-based processes

    Get PDF
    Proteins are one the most widely studied biomolecules with diverse functions and applications. Aiming at overcoming the current drawbacks of purification processes of proteins, the introduction of ionic liquids (ILs) has been a hot topic of research. ILs have been applied in the creation of aqueous biphasic systems (IL-based ABS), solid-phase extractions through poly(ionic liquid)s (PILs) and supported ionic-liquid phases (SILPs), and in the crystallization of proteins. In this sense, ILs have emerged as solvents, electrolytes or adjuvants, or as supported materials to tune the adsorption/affinity capacity aiming at developing an efficient, cost-effective, sustainable and green IL-based process for protein extraction. This review discusses different IL-based processes in the extraction and purification of proteins in the past years, namely IL-based aqueous biphasic systems (IL-based ABS), solid-phase extractions through PILs and SILPs, and protein crystallization. The type and structure of ILs applied and their influence in the different processes performance are also discussed.publishe

    Multi-walled carbon nanotubes as a platform for Immunoglobulin G attachment

    Get PDF
    Nanomaterials have been extensively used in different applications due to their peculiar characteristics and nanoscale dimensions. Among nanoparticles, carbon-based nanomaterials are becoming highly attractive for biomedical applications such as diagnosis, tissue engineering, drug delivery, and biosensing. The conjugation of carbon-based nanomaterials with antibodies combines the properties of these materials with the specific and selective recognition ability of the antibodies to antigens. The present work proposes a process intensification approach for immunoglobulin G (IgG present in rabbit serum) attachment on multi-walled carbon nanotubes (MWCNTs) in a single step. The effect of several parameters, namely MWCNTs external diameter, rabbit serum concentration, MWCNTs functionalization and pH value, on the IgG attachment yield was evaluated. The dilution of rabbit serum decreased other protein attachment, namely rabbit serum albumin (RSA), while increasing the IgG yield to 100%. The interaction mechanisms between IgG and MWCNTs were evaluated at pH 5.0 to 8.0. The protonation of IgG amino acids indicates that N-term are the most reactive amino acids in the antibody structure. The identification of the N-term reactivity at pH 8.0 allows to indicate a possible orientation of the antibody over the MWCNTs surface, described as “end-on”. Since the amount of RSA attached to MWNT decreased with the increase in serum dilution, the IgG orientation and amine activity was not affected. This orientation demonstrates that the IgG attachment over the surface of the MWCNTs could be an effective strategy to maintain the antigen recognition by the antibody, and to be used for biomedical applications.publishe

    Aqueous biphasic systems composed of ionic liquids: one-step extraction/concentration techniques for water pollution tracers

    Get PDF
    Emergent micropollutants have become a serious global problem with a large impact in the environment and human health, while their presence in aquatic systems has been registered as ranging from ng/L-1 to ug/L-1. Pharmaceuticals are ubiquitous micropollutants since their continuous consumption and consequent release via human excretions into aqueous systems are inevitable. Due to their usually low concentrations in aqueous samples, the development of a pre-concentration technique in order to continuously quantify and to monitor these components in aqueous streams is of major relevance. Aqueous biphasic systems (ABS) composed of ionic liquids (ILs) can be seen as more sustainable separation processes since they avoid the use of volatile and hazardous organic solvents (VOCs). As liquid-liquid systems, ABS can be used as extraction, purification and concentration platforms. Due to the outstanding tunable properties of ILs, IL-based ABS provide higher and more selective extraction efficiencies for a wide range of compounds when compared to traditional polymer-based ABS. IL-based ABS were already employed and adequately characterized for the extraction and concentration of endocrine disruptors, either from biological fluids or aqueous matrices. The aim of this work is to demonstrate the applicability of IL-based ABS to completely extract and concentrate, in one-step, two different and representative pharmaceutical pollution tracers, namely caffeine (CAF) and carbamazepine (CBZ). The low concentration of these persistent pollutants (usually found in ug/L-1 and ng/L-1 levels) does not allow a proper detection and quantification by conventional analytical equipment without a previous concentration step. However, pre-concentration methods commonly applied are costly, time-consuming, provide irregular recoveries and/or use VOCs. In this work, ABS composed of the IL tetrabutylammonium chloride ([N4444]Cl) and the salt K3C6H5O7 was investigated, demonstrating to be able to completely extract and concentrate CAF and CBZ in a single-step. Moreover, with this pre-treatment step it was demonstrated to be possible to overcome the detection limits of a high performance liquid chromatography coupled to an UV-Vis detector equipment. The results obtained demonstrate that IL-based ABS are versatile pre-concentration techniques, and can be used for the extraction and concentration of a large plethora of other micropollutants from environmental aqueous matrices.publishe
    • …
    corecore