Improving the downstream processing of interferon alfa-2b using alternative purification platforms based on ionic liquids

Abstract

Improvements on human life expectancy and the lack of effective therapies has led to an increment of chronic diseases, being the application of biopharmaceuticals an efficient strategy to mitigate this scenario. Among the current available biopharmaceuticals, the role of interferon α-2b (IFNα-2b) should be highlighted, as it has been marketed over 30 years with a considerable impact on the global therapeutic proteins market (Castro et al, Vaccines, 2021). IFN manufacturing requires the use of the recombinant DNA technology, involving two main stages, the upstream and downstream stages. The first includes recombinant protein production in a suitable host microorganism, such as Escherichia coli (Castro et al, Sep. Purif. Technol., 2020), while the second comprises protein recovery, isolation, purification and polishing. Due to the high demands of the pharmaceutical industry for products with high purity and biological activity, the downstream stage is responsible for the majority of the production costs of biopharmaceuticals (50–90%), often including time-consuming and multi-step processes. Therefore, there is an immediate need to develop more efficient, cost-effective, and sustainable protein purification methodologies. In this work, two ionic-liquid-(IL)-based strategies were investigated for the purification of IFNα-2b recombinantly produced from E. coli fermentation broth, namely as adjuvants in aqueous biphasic systems or as chromatographic ligands immobilized in solid materials. Overall, the obtained results demonstrate that by tailoring IL’s chemical structures, improved protein purification processes are obtained and that the secondary structure of proteins is preserved.publishe

    Similar works