11 research outputs found

    Prenatal exposure to methadone or buprenorphine: Early childhood developmental outcomes.

    Get PDF
    BACKGROUND: Methadone and buprenorphine are recommended to treat opioid use disorders during pregnancy. However, the literature on the relationship between longer-term effects of prenatal exposure to these medications and childhood development is both spare and inconsistent. METHODS: Participants were 96 children and their mothers who participated in MOTHER, a randomized controlled trial of opioid-agonist pharmacotherapy during pregnancy. The present study examined child growth parameters, cognition, language abilities, sensory processing, and temperament from 0 to 36 months of the child\u27s life. Maternal perceptions of parenting stress, home environment, and addiction severity were also examined. RESULTS: Tests of mean differences between children prenatally exposed to methadone vs. buprenorphine over the three-year period yielded 2/37 significant findings for children. Similarly, tests of mean differences between children treated for NAS relative to those not treated for NAS yielded 1/37 significant finding. Changes over time occurred for 27/37 child outcomes including expected child increases in weight, head and height, and overall gains in cognitive development, language abilities, sensory processing, and temperament. For mothers, significant changes over time in parenting stress (9/17 scales) suggested increasing difficulties with their children, notably seen in increasing parenting stress, but also an increasingly enriched home environment (4/7 scales). CONCLUSIONS: Findings strongly suggest no deleterious effects of buprenorphine relative to methadone or of treatment for NAS severity relative to not-treated for NAS on growth, cognitive development, language abilities, sensory processing, and temperament. Moreover, findings suggest that prenatal opioid agonist exposure is not deleterious to normal physical and mental development

    Overexpression of Reelin Prevents the Manifestation of Behavioral Phenotypes Related to Schizophrenia and Bipolar Disorder

    Get PDF
    Despite the impact of schizophrenia and mood disorders, which in extreme cases can lead to death, recent decades have brought little progress in the development of new treatments. Recent studies have shown that Reelin, an extracellular protein that is critical for neuronal development, is reduced in schizophrenia and bipolar disorder patients. However, data on a causal or protective role of Reelin in psychiatric diseases is scarce. In order to study the direct influence of Reelin's levels on behavior, we subjected two mouse lines, in which Reelin levels are either reduced (Reelin heterozygous mice) or increased (Reelin overexpressing mice), to a battery of behavioral tests: open-field, black–white box, novelty-suppressed-feeding, forced-swim-test, chronic corticosterone treatment followed by forced-swim-test, cocaine sensitization and pre-pulse inhibition (PPI) deficits induced by N-methyl--aspartate (NMDA) antagonists. These tests were designed to model some aspects of psychiatric disorders such as schizophrenia, mood, and anxiety disorders. We found no differences between Reeler heterozygous mice and their wild-type littermates. However, Reelin overexpression in the mouse forebrain reduced the time spent floating in the forced-swim-test in mice subjected to chronic corticosterone treatment, reduced behavioral sensitization to cocaine, and reduced PPI deficits induced by a NMDA antagonist. In addition, we demonstrate that while stress increased NMDA NR2B-mediated synaptic transmission, known to be implicated in depression, Reelin overexpression significantly reduced it. Together, these results point to the Reelin signaling pathway as a relevant drug target for the treatment of a range of psychiatric disorders

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∌99% of the euchromatic genome and is accurate to an error rate of ∌1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore