9 research outputs found

    Tropical spectrum of Rana ridibunda and its importance in trophical web in the Crişul Repede/Sebes-Körös river ecosystems

    Get PDF
    65 Rana ridibunda specimens were collected from 3 sampling sites in Cri§ul Repede river, for stomach content analysis. It was found that Rana ridibunda consumes 11 insect orders (63.5%) and 5 other invertebrate orders (36.5%). The green frog participate in terrestrial trophical chains, consuming invertebrates from terrestrial habitats (89.08% of total food) and from aquatical habitats (10.92% of total food)

    Role of rhizobacteria in plant abiotic stress management

    Get PDF

    Performance Comparison of Eichhornia crassipes and Salvinia natans on Azo-Dye (Eriochrome Black T) Phytoremediation

    Get PDF
    Organic pollutants, such as dyes, have a negative effect on the aqueous environment, therefore, their elimination from water bodies is a high priority. In this work, Eichhornia crassipes and Salvinia natans, both model plants with high phytoremediation efficiency, were exposed to various concentrations (Ci = 50–500 mg/L) of Eriochrome Black T (EBT). Their capacity to assimilate EBT was studied for 16 days of exposure, similar to natural conditions and by spectrophotometric monitoring of the dye concentration (EE. crassipes; 150 mg/L = 33%; ES. natans; 150 mg/L = 71.5%). The changes of the experimental parameters (pH—equalised by day 5, temperature, humidity, light intensity) were followed, and plant growth and biochemical responses to toxic stress effects (photosynthetic pigments, Energy-dispersive X-ray spectroscopy (EDX)—decreased effect of P, Mg, Ca, S and K, Scanning electron microscopy (SEM), defense enzyme) were examined. Furthermore, changes in oxidative- and photo-degradation of EBT in time and the solid-state properties (SEM, EDX, Fourier-transform infrared spectroscopy-FTIR) of the dye were investigated. Our results demonstrate that, despite the toxic stress, both species succeeded in reducing the dye-concentration of the water and S. natans proved to be more efficient in binding and removing organic dyes. With our findings, we proved that both plants alleviated the abiotic stress of dye contamination

    Increase in Artemisia annua Plant Biomass Artemisinin Content and Guaiacol Peroxidase Activity Using the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis

    No full text
    The main objective of this study was to investigate Artemisia annua plant property variations in terms of plant biomass, glandular trichome numbers, artemisinin production and Guaiacol peroxidase (GPOX) activity when plants are in mutualism with AMF. According to the results, A. annua mutualism with AMF significantly increased the most important and pharmaceutically relevant factors of fresh and dry plant biomass. This increase, especially in the biomass of plant herba (leaves), was 30% higher during the vegetation period and remained high (29% higher than for control) when plants were harvested at the end of the vegetation period. Similar differences in dry biomass were also detected. Glandular trichomas numbers increased by 40%, and the artemisinin content by 17% under AMF colonization. No effects due to AMF on chlorophyll variations were detected, while GPOX enzyme concentrations increased significantly under AMF colonization. Altogether the Artemisia plant properties with high pharmaceutically importance (fresh and dry biomass of leaves and artemisinin, number of trichomes and the artemisinin content) were significantly improved by AMF, the application in Artemisia cultivation can be an effective and cheap method. The high GPOX activity under AMF colonization indicate an enhanced oxidative stress alleviation, therefore a higher resistance to water deficiency, mechanisms important under climate conditions with low water supply where Artemisia is usually cultivated

    Arbuscular Mycorrhizal Fungus Rhizophagus irregularis Influences Artemisia annua Plant Parameters and Artemisinin Content under Different Soil Types and Cultivation Methods

    No full text
    Artemisinin extracted from Artemisia annua has been used efficiently in malaria treatment since 2005. In this study, the variations in plant parameters (plant biomass, glandular trichome density, essential oil total chemical content, artemisinin production, and polyphenol oxidase (PPO) activity) were tested under different soil types (Luvisol, Gleysol, Anthrosol and sterile peat) and cultivation conditions (potted plants in semi-open field, and open field experiments) for plants inoculated with arbuscular mycorrhizal fungus (AMF) Rizophagus irregularis. Under semi-open field conditions, the AMF colonization of A. annua plant roots varied, and presented the highest percentage in Luvisol and sterile peat. The increase in the root colonization rate positively influenced some plant parameters (biomass, glandular trichome density, artemisinin concentration, essential oil quantity and composition), but no effects on PPO enzyme activity were detected. AMF fungus R. irregularis significantly increased the artemisinin content and essential oil yield of plants cultivated in Luvisol, Gleysol, Anthrosol and in peat. These soil types can offer appropriate conditions for A. annua cultivation and artemisinin production even on a smaller scale. Under open field conditions, low (about 5%) AMF colonization was observed. No differences in artemisin contents were detected, but essential oil yield significantly increased compared to control plants. AMF treatment increased beta-farnesene and germacrene D concentrations in Artemisia plants in the open field experiment
    corecore