6 research outputs found

    Curcumin and Ethanol Effects in Trembler-J Schwann Cell Culture.

    Get PDF
    Charcot-Marie-Tooth (CMT) syndrome is the most common progressive human motor and sensory peripheral neuropathy. CMT type 1E is a demyelinating neuropathy affecting Schwann cells due to peripheral-myelin-protein-22 (PMP22) mutations, modelized by Trembler-J mice. Curcumin, a natural polyphenol compound obtained from turmeric (Curcuma longa), exhibits dose- and time-varying antitumor, antioxidant and neuroprotective properties, however, the neurotherapeutic actions of curcumin remain elusive. Here, we propose curcumin as a possible natural treatment capable of enhancing cellular detoxification mechanisms, resulting in an improvement of the neurodegenerative Trembler-J phenotype. Using a refined method for obtaining enriched Schwann cell cultures, we evaluated the neurotherapeutic action of low dose curcumin treatment on the PMP22 expression, and on the chaperones and autophagy/mammalian target of rapamycin (mTOR) pathways in Trembler-J and wild-type genotypes. In wild-type Schwann cells, the action of curcumin resulted in strong stimulation of the chaperone and macroautophagy pathway, whereas the modulation of ribophagy showed a mild effect. However, despite the promising neuroprotective effects for the treatment of neurological diseases, we demonstrate that the action of curcumin in Trembler-J Schwann cells could be impaired due to the irreversible impact of ethanol used as a common curcumin vehicle necessary for administration. These results contribute to expanding our still limited understanding of PMP22 biology in neurobiology and expose the intrinsic lability of the neurodegenerative Trembler-J genotype. Furthermore, they unravel interesting physiological mechanisms of cellular resilience relevant to the pharmacological treatment of the neurodegenerative Tremble J phenotype with curcumin and ethanol. We conclude that the analysis of the effects of the vehicle itself is an essential and inescapable step to comprehensibly assess the effects and full potential of curcumin treatment for therapeutic purposes.TThis research was funded by the Comisión Sectorial de Investigación Científica de la Universidad de la República (CSIC I+D, 2013), Agencia Nacional de Investigación e Innovación (ANII, FCE_1_2019_1_155539) and Programa de Desarrollo de Ciencias Básicas (PEDECIBA, CCA-Bio/Res. 6.1-2/4/2019). This work was also supported by a grant PID2019-110401RB-100 from the Spanish, Ministry of Science and Innovation and the Spanish CIBERNED network (M.C.).S

    Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice

    Get PDF
    Myelination of the peripheral nervous system requires Schwann cells (SC) differentiation into the myelinating phenotype. The peripheral myelin protein-22 (PMP22) is an integral membrane glycoprotein, expressed in SC. It was initially described as a growth arrest-specific (gas3) gene product, up-regulated by serum starvation. PMP22 mutations were pathognomonic for human hereditary peripheral neuropathies, including the Charcot-Marie-Tooth disease (CMT). Trembler-J (TrJ) is a heterozygous mouse model carrying the same pmp22 point mutation as a CMT1E variant. Mutations in lamina genes have been related to a type of peripheral (CMT2B1) or central (autosomal dominant leukodystrophy) neuropathy. We explore the presence of PMP22 and Lamin B1 in Wt and TrJ SC nuclei of sciatic nerves and the colocalization of PMP22 concerning the silent heterochromatin (HC: DAPI-dark counterstaining), the transcriptionally active euchromatin (EC), and the nuclear lamina (H3K4m3 and Lamin B1 immunostaining, respectively). The results revealed that the number of TrJ SC nuclei in sciatic nerves was greater, and the SC volumes were smaller than those of Wt. The myelin protein PMP22 and Lamin B1 were detected in Wt and TrJ SC nuclei and predominantly in peripheral nuclear regions. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. The level of PMP22 was higher, and those of Lamin B1 lower in TrJ than in Wt mice. PMP22 colocalized more with Lamin B1 and with the transcriptionally competent EC, than the silent HC with differences between Wt and TrJ genotypes. The results are discussed regarding the probable nuclear role of PMP22 and the relationship with TrJ neuropathy.This research was funded by the Comisión Sectorial de Investigación Científica de la Universidad de la República (CSIC I+D, 2013), Agencia Nacional de Investigación e Innovación (ANII, FCE_1_2019_1_155539) and Programa de Desarrollo de Ciencias Básicas (PEDECIBA, annual fund allocation for academics).S

    Acute Genetic Damage Induced by Ethanol and Corticosterone Seems to Modulate Hippocampal Astrocyte Signaling

    No full text
    Astrocytes maintain CNS homeostasis but also critically contribute to neurological and psychiatric disorders. Such functional diversity implies an extensive signaling repertoire including extracellular vesicles (EVs) and nanotubes (NTs) that could be involved in protection or damage, as widely shown in various experimental paradigms. However, there is no information associating primary damage to the astrocyte genome, the DNA damage response (DDR), and the EV and NT repertoire. Furthermore, similar studies were not performed on hippocampal astrocytes despite their involvement in memory and learning processes, as well as in the development and maintenance of alcohol addiction. By exposing murine hippocampal astrocytes to 400 mM ethanol (EtOH) and/or 1 μM corticosterone (CTS) for 1 h, we tested whether the induced DNA damage and DDR could elicit significant changes in NTs and surface-attached EVs. Genetic damage and initial DDR were assessed by immunolabeling against the phosphorylated histone variant H2AX (γH2AX), DDR-dependent apoptosis by BAX immunoreactivity, and astrocyte activation by the glial acidic fibrillary protein (GFAP) and phalloidin staining. Surface-attached EVs and NTs were examined via scanning electron microscopy, and labeled proteins were analyzed via confocal microscopy. Relative to controls, astrocytes exposed to EtOH, CTS, or EtOH+CTS showed significant increases in nuclear γlH2AX foci, nuclear and cytoplasmic BAX signals, and EV frequency at the expense of the NT amount, mainly upon EtOH, without detectable signs of morphological reactivity. Furthermore, the largest and most complex EVs originated only in DNA-damaged astrocytes. Obtained results revealed that astrocytes exposed to acute EtOH and/or CTS preserved their typical morphology but presented severe DNA damage, triggered canonical DDR pathways, and early changes in the cell signaling mediated by EVs and NTs. Further deepening of this initial morphological and quantitative analysis is necessary to identify the mechanistic links between genetic damage, DDR, cell-cell communication, and their possible impact on hippocampal neural cells

    Central Alteration in Peripheral Neuropathy of Trembler-J Mice: Hippocampal pmp22 Expression and Behavioral Profile in Anxiety Tests.

    Get PDF
    Charcot-Marie-Tooth (CMT) type 1 disease is the most common human hereditary demyelinating neuropathy. Mutations in pmp22 cause about 70% of all CMT1. Trembler-J (TrJ/+) mice are an animal model of CMT1E, having the same spontaneous pmp22 mutation that is found in humans. We compared the behavior profile of TrJ/+ and +/+ (wild-type) in open-field and elevated-plus-maze anxiety tests. In these tests, TrJ/+ showed an exclusive head shake movement, a lower frequency of rearing, but a greater frequency of grooming. In elevated-plus-maze, TrJ/+ defecate more frequently, performed fewer total entries, and have fewer entries to closed arms. These hippocampus-associated behaviors in TrJ/+ are consistent with increased anxiety levels. The expression of pmp22 and soluble PMP22 were evaluated in E17-hippocampal neurons and adult hippocampus by in situ hybridization and successive immunohistochemistry. Likewise, the expression of pmp22 was confirmed by RT-qPCR in the entire isolated hippocampi of both genotypes. Moreover, the presence of aggregated PMP22 was evidenced in unmasked granular hippocampal adult neurons and shows genotypic differences. We showed for the first time a behavior profile trait associated with anxiety and a differential expression of pmp22/PMP22 in hippocampal neurons of TrJ/+ and +/+ mice, demonstrating the involvement at the central level in an animal model of peripheral neuropathy (CMT1E).This research was funded by the Comisión Sectorial de Investigación Científica de la Universidad de la República; Agencia Nacional de Investigación e Innovación (ANII) and the Programa de Desarrollo de Ciencias Básicas (PEDECIBA).S
    corecore