4 research outputs found

    Estimation of Indoor 222Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes

    Get PDF
    Radon is the main source of natural radioactivity, and its measurement is considered extremely important in radioprotection, given its relationship with the occurrence of lung cancer. In the last two years, measurements of this radioactive gas were carried out in Lima considering a grid of 5 km (Formula presented.) and the population density to determine the number of measurements to be carried out. Cellulose nitrate nuclear track detectors exposed in bare mode and diffusion chamber mode were used to estimate (Formula presented.) Rn concentrations. In diffusion chamber mode, non-commercial monitors and commercial monitors were used. The monitoring results are presented for 43 districts of the Lima Province whose population is approximately ten million inhabitants occupying a total area of 2655.15 km (Formula presented.). Measurements were made obtaining an average concentration of 49 Bq·m (Formula presented.) using bare detectors and 66 Bq·m (Formula presented.) using non-commercial diffusion chambers. Average concentrations obtained by both detector exposure modes were below the maximum concentration recommended by the WHO. A radon ((Formula presented.) Rn) map was also obtained as a visual representation of the (Formula presented.) Rn levels in the Lima province using inverse distance weighting (IDW) interpolation

    Radiaciones ionizantes y su impacto Primer Simposio Internacional sobre Medioambiente (ISE 2017)

    Get PDF
    Son ya varias las décadas en las que en América Latina se ha trabajado arduamente sobre las radiaciones ionizantes; tanto en las ionizantes directas, tales como las partículas beta positivas y negativas, las partículas alfa, los protones, los mesones cargados, los muones y los iones pesados, así como también en las ionizantes indirectas (las producidas por partículas sin cargas), como las generadas por fotones con energías superiores a los 10 keV y los neutrones. Por otro lado, las radiaciones no ionizantes también han sido objeto de detallados estudios, y muy especialmente las provenientes del Sol, como el factor natural más influyente sobre la Tierra. En esta obra se presentan algunos de los avances en los que han participado reconocidos científicos latinoamericanos, como el Dr. Héctor Vega Carrillo, Dr. Daniel Palacios, Dra. Patrizia Pereyra, Dra. Sheila Serrano, y el Dr. Manuel Ernesto Delgado, entre otros. Esta obra puede ser de interés para profesionales del área de la protección radiológica, la ingeniería ambiental, física de la atmósfera y áreas afines, así como para estudiantes

    55-58 Basements of the New Engineering Building from the Pontificia Universidad Católica del Perú

    No full text
    Abstract Historical data of 222 Radon concentrations were collected in the building of Engineering PUCP recently built with eleven levels (eight on grades and three basements). The measurements were made in the three basement levels of the building. The first results of the history of 222 Radon concentrations in the basements of this building used as a parking lot are shown. The monitoring started the first week it was opened to the public. As nuclear track detectors we use the polymer cellulose nitrate (LR115 -Type 2). Changes in the concentration of 222 Radon registered, are linked into account aspects such as the use of exhaust extractors, increase in the number of vehicles, construction time and seasonal parameters. The results show adequate levels of 222 Radon concentration in all basements, the highest value is 97, 41 Bq/ m 3 at the deepest level, the third

    Estimation of Indoor <sup>222</sup>Rn Concentration in Lima, Peru Using LR-115 Nuclear Track Detectors Exposed in Different Modes

    No full text
    Radon is the main source of natural radioactivity, and its measurement is considered extremely important in radioprotection, given its relationship with the occurrence of lung cancer. In the last two years, measurements of this radioactive gas were carried out in Lima considering a grid of 5 km2 and the population density to determine the number of measurements to be carried out. Cellulose nitrate nuclear track detectors exposed in bare mode and diffusion chamber mode were used to estimate 222Rn concentrations. In diffusion chamber mode, non-commercial monitors and commercial monitors were used. The monitoring results are presented for 43 districts of the Lima Province whose population is approximately ten million inhabitants occupying a total area of 2655.15 km2. Measurements were made obtaining an average concentration of 49 Bq·m−3 using bare detectors and 66 Bq·m−3 using non-commercial diffusion chambers. Average concentrations obtained by both detector exposure modes were below the maximum concentration recommended by the WHO. A radon (222Rn) map was also obtained as a visual representation of the 222Rn levels in the Lima province using inverse distance weighting (IDW) interpolation
    corecore