20 research outputs found

    X-ray photoelectron spectroscopy: a surface characterization technique

    Get PDF
    During the last years, an increasing number of students have visited the XPS laboratory for characterizing their samples with this experimental technique. Their background span over a wide range of fields such as physics, material science, chemistry and biology, among others. For most of them, both XPS and ultra-high vacuum technology were something new and they needed help to deal with the data of their samples. This book tries to concentrate the key information that a young researcher needs for a first approach to XPS. We hope the students will understand its working principle and will obtain the basic tools for analysing their data.publishe

    Improved detection of domoic acid using covalently immobilised antibody fragments

    Get PDF
    Antibody molecules, and antibody fragments in particular, have enormous potential in the development of biosensors for marine monitoring. Conventional immobilisation approaches used in immunoassays typically yield unstable and mostly incorrectly oriented antibodies, however, resulting in reduced detection sensitivities for already low concentration analytes. The 2H12 anti-domoic acid scFv antibody fragment was engineered with cysteine-containing linkers of two different lengths, distal to the antigen binding pocket, for covalent and correctly oriented immobilisation of the scFvs on functionalised solid supports. The Escherichia coli-produced, cysteine-engineered scFvs dimerised in solution and demonstrated similar efficiencies of covalent immobilisation on maleimide-activated plates and minimal non-covalent attachment. The covalently attached scFvs exhibited negligible leaching from the support under acidic conditions that removed almost 50% of the adsorbed wildtype fragment, and IC(50)s for domoic acid of 270 and 297 ng/mL compared with 1126 and 1482 ng/mL, respectively, for their non-covalently adsorbed counterparts. The expression and immobilisation approach will facilitate the development of stable, reusable biosensors with increased stability and detection sensitivity for marine neurotoxins

    Improved detection of domoic acid using covalently immobilised antibody fragments

    No full text
    Antibody molecules, and antibody fragments in particular, have enormous potential in the development of biosensors for marine monitoring. Conventional immobilisation approaches used in immunoassays typically yield unstable and mostly incorrectly oriented antibodies, however, resulting in reduced detection sensitivities for already low concentration analytes. The 2H12 anti-domoic acid scFv antibody fragment was engineered with cysteine-containing linkers of two different lengths, distal to the antigen binding pocket, for covalent and correctly oriented immobilisation of the scFvs on functionalised solid supports. The Escherichia coli-produced, cysteine-engineered scFvs dimerised in solution and demonstrated similar efficiencies of covalent immobilisation on maleimide-activated plates and minimal non-covalent attachment. The covalently attached scFvs exhibited negligible leaching from the support under acidic conditions that removed almost 50% of the adsorbed wildtype fragment, and IC(50)s for domoic acid of 270 and 297 ng/mL compared with 1126 and 1482 ng/mL, respectively, for their non-covalently adsorbed counterparts. The expression and immobilisation approach will facilitate the development of stable, reusable biosensors with increased stability and detection sensitivity for marine neurotoxins

    Chemical Changes of Graphene Oxide Thin Films Induced by Thermal Treatment under Vacuum Conditions

    No full text
    Reduction of graphene oxide is one of the most promising strategies for obtaining bulk quantities of graphene-like materials. In this study, graphene oxide was deposited on SiO2 and reduced by annealing at 500 K under vacuum conditions (5 × 10−1 Pa). Here, graphene oxide films as well as their chemical changes upon heating were characterized in depth by X-ray photoelectron spectroscopy, Raman spectroscopy, and scanning electron and atomic force microscopies. From the chemical point of view, the as prepared graphene oxide films presented a large quantity of oxidized functional groups that were reduced to a large extent upon heating. Moreover, residual oxidized sulfur species that originated during the synthesis of graphene oxide (GO) were almost completely removed by heating while nitrogen traces were integrated into the carbon framework. On the other hand, regarding structural considerations, reduced graphene oxide films showed more homogeneity and lower roughness than graphene oxide films

    Engineering recombinant antibodies for polymer biofunctionalization

    Get PDF
    The attachment of recognition elements such as antibody fragments to polymeric substrates can be used to mediate cell- or protein-specific interactions. In this work, single-chain Fv (scFv) antibody fragments were isolated against two cell types of interest and expressed in an Escherichia coli expression platform. The scFvs were engineered at their C-terminus to incorporate a cysteine-containing linker, for reaction with maleimide-linked polymers, or a heptasaccharide glycan for complexation with surface amine moieties. Antigen binding of the modified scFvs was unchanged, and expression yields of the glyco-engineered scFvs were similar to the unmodified molecules, while cys-tagged scFv yields varied between scFv variants. Targeted immobilization of the scFvs via either modification resulted in three-to five-fold higher binding of ligands over adsorbed molecules. The study demonstrates a simple and efficient antibody engineering and modification approach for effective targeted immobilization on polymeric substrates. Copyright (C) 2015 John Wiley & Sons, Ltd.This work was supported by Irish Research Council (IRC) grantPD/2010/1689 (MJH), Science Foundation Ireland Grant 07/SRC/B1163 (CC, AS), Enterprise Ireland Science and TechnologyAgency Grant PC/2007/021 (SR) and European Union “EPICstent”Project Grant FP7-PEOPLE-2012-IAPP-324514 (SA)

    Use of a novel battery of bioassays for the biological characterisation of hazardous wastes

    No full text
    Four toxicity bioassays were used for the biological characterisation of nine hazardous wastes and extracts. This evaluation included conventional and novel bioassays, and combined in vivo and in vitro tests in order to facilitate the effect characterisation. This test battery incorporated different relevant taxonomic groups for the aquatic compartment and covered several ecotoxicological endpoints. The toxicity bioassays used for this characterisation were the acute immobilisation daphnia test, an acute toxicity test with larvae of Xenopus laevis, an in vitro test with the fish cell line RTG-2 comprising endpoints for cellular defence and viability, and finally the DR-CALUX® assay to detect dioxin-like compounds. The aim of this study is to contribute to the development of a cost-effective battery of toxicity tests for the acute screening of hazardous and toxic wastes for the aquatic compartment. For this objective, the correlations between toxicity data derived from all bioassay were studied using a multivariate analysis, including the Principal Component Analysis. The results showed that Daphnia and Xenopus were effective assays to detect toxicity and they could be incorporated to a screening test battery. On the other hand, the toxicity results with the in vitro test RTG-2 showed that this test could be a good alternative to in vivo tests, demonstrating an acceptable sensitivity for toxicity detection and contributing other advantages as reducing assays cost and animal testing. Finally DR-CALUX® test implemented the tests-batteries in the screening of hazardous wastes when there is a suspicious that dioxin-like compounds are presented in the samples. © 2009 Elsevier Inc. All rights reserved

    Immobilised rGO/TiO2 Nanocomposite for Multi-Cycle Removal of Methylene Blue Dye from an Aqueous Medium

    No full text
    This work presents the immobilisation of titanium dioxide (TiO2) nanoparticles (NPs) and reduced graphene oxide (rGO)-TiO2 nanocomposite on glass sheets for photocatalytic degradation of methylene blue (MB) under different radiation sources such as ultraviolet and simulated solar radiation. The TiO2 NPs and rGO-TiO2 nanocomposite were synthesised through a simple hydrothermal method of titanium isopropoxide precursor followed by calcination treatment. Deposition of prepared photocatalysts was performed by spin-coating method. Additionally, ethylene glycol was mixed with the prepared TiO2 NPs and rGO-TiO2 nanocomposite to enhance film adhesion on the glass surface. The photocatalytic activity under ultraviolet and simulated solar irradiation was examined. Further, the influence of different water matrices (milli-Q, river, lake, and seawater) and reactive species (h+, •OH, and e−) on the photocatalytic efficiency of the immobilised rGO/TiO2 nanocomposite was careful assessed. MB dye photocatalytic degradation was found to increase with increasing irradiation time for both irradiation sources. The immobilisation of prepared photocatalysts is very convenient for environment applications, due to easy separation and reusability, and the investigated rGO/TiO2-coated glass sheets demonstrated high efficiency in removing MB dye from an aqueous medium during five consecutive cycles

    Sustainable and recoverable waste-based magnetic nanocomposites used for the removal of pharmaceuticals from wastewater

    No full text
    This work aimed at producing easily recoverable magnetic iron-oxide functionalized activated carbons (AC) through environmentally and energetically sustainable methods, evaluating their efficacy towards the removal of the pharmaceuticals diclofenac (DCF) and venlafaxine (VEN) from different aqueous matrices (ultrapure water and wastewater treatment plant effluents). Two AC were prepared by chemical activation of a biomassic industrial waste followed by either conventional (CP) or microwave (MW) pyrolysis. Then, magnetic iron oxide nanoparticles were loaded onto the produced AC. Differences related to the production procedure were not especially remarkable, since both the resulting magnetic composites (MAC-CP and MAC-MW) presented well-developed micropore structures with specific surface areas of 644 and 548 m2 g−1 and saturation magnetization of 32.9 and 22.5 emu g−1, respectively, which conferred them a high adsorptive performance and efficient magnetic recovery from solution. The kinetic data were well described by both pseudo-first and pseudo-second order models. As for the equilibrium data, Langmuir isotherm provided a good fitting, with maximum adsorption capacities ranging between 97 ± 2 and 215 ± 4 µmol g−1 for MAC-CP and between 80 ± 2 and 172 ± 3 µmol g−1 for MAC-MW. Additionally, in binary (DCF and VEN) solutions and wastewater, adsorption onto both MAC was somewhat inhibited due to competitive effects. MW-assisted regeneration of exhausted MAC was effective, as their adsorptive properties and chemical surface features (according to X-Ray photoelectron spectroscopy) remained unchanged. Overall, the produced waste-based magnetic carbon composites simultaneously combine high adsorptive efficiency, easy retrievability and successful regeneration/reutilization.publishe

    Immobilised rGO/TiO<sub>2</sub> Nanocomposite for Multi-Cycle Removal of Methylene Blue Dye from an Aqueous Medium

    No full text
    This work presents the immobilisation of titanium dioxide (TiO2) nanoparticles (NPs) and reduced graphene oxide (rGO)-TiO2 nanocomposite on glass sheets for photocatalytic degradation of methylene blue (MB) under different radiation sources such as ultraviolet and simulated solar radiation. The TiO2 NPs and rGO-TiO2 nanocomposite were synthesised through a simple hydrothermal method of titanium isopropoxide precursor followed by calcination treatment. Deposition of prepared photocatalysts was performed by spin-coating method. Additionally, ethylene glycol was mixed with the prepared TiO2 NPs and rGO-TiO2 nanocomposite to enhance film adhesion on the glass surface. The photocatalytic activity under ultraviolet and simulated solar irradiation was examined. Further, the influence of different water matrices (milli-Q, river, lake, and seawater) and reactive species (h+, •OH, and e−) on the photocatalytic efficiency of the immobilised rGO/TiO2 nanocomposite was careful assessed. MB dye photocatalytic degradation was found to increase with increasing irradiation time for both irradiation sources. The immobilisation of prepared photocatalysts is very convenient for environment applications, due to easy separation and reusability, and the investigated rGO/TiO2-coated glass sheets demonstrated high efficiency in removing MB dye from an aqueous medium during five consecutive cycles
    corecore