3 research outputs found

    BOLA-DRB3 gene polymorphisms influence bovine leukaemia virus infection levels in Holstein and Holstein × Jersey crossbreed dairy cattle

    No full text
    Bovine leukemia virus (BLV) infections, causing persistent lymphocytosis and lethal lymphosarcoma in cattle, have reached high endemicity on dairy farms. We observed extensive inter-individual variation in the level of infection (LI) by assessing differences in proviral load in peripheral blood. This phenotypic variation appears to be determined by host genetics variants, especially those located in the BoLA-DRB3 MHCII molecule. We performed an association study using sequencing-based typed BOLA-DRB3 alleles from over 800 Holstein and Holstein × Jersey cows considering LI in vivo and accounting for filial relationships. The DBR3*0902 allele was associated with a low level of infection (LLI) (<1% of circulating infected B-cells), whereas the DRB3*1001 and DRB3*1201 alleles were related to a high level of infection (HLI). We found evidence that 13 polymorphic positions located in the pockets of the peptide-binding cleft of the BOLA-DRB3 alleles were associated with LI. DRB3*0902 had unique haplotypes for each of the pockets: Ser13-Glu70-Arg71-Glu74 (pocket 4), Ser11-Ser30 (pocket 6), Glu28-Trp61-Arg71 (pocket 7) and Asn37-Asp57 (pocket 9), and all of them were significantly associated with LLI. Conversely, Lys13-Arg70-Ala71-Ala74 and Ser13-Arg70-Ala71-Ala74, corresponding to the DRB3*1001 and *1201 alleles respectively, were associated with HLI. We showed that the specific amino acid pattern in the DRB3*0902 peptide-binding cleft may be related to the set point of a very low proviral load level in adult cows. Moreover, we identified two BOLA-DRB3 alleles associated with a HLI, which is compatible with a highly contagious profile.Fil: Carignano, Hugo Adrián. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; ArgentinaFil: Beribe, María José. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Buenos Aires Norte. Estación Experimental Agropecuaria Pergamino; ArgentinaFil: Caffaro, Matias Exequiel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amadio, Ariel Fernando. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nani, J. P.. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Santa Fe. Estación Experimental Agropecuaria Rafaela; ArgentinaFil: Gutierrez, Gabriel. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; ArgentinaFil: Alvarez, Irene. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Trono, Karina Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Virología; ArgentinaFil: Miretti, Marcos Mateo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas | Universidad Nacional de Misiones. Instituto de Biología Subtropical. Instituto de Biología Subtropical - Nodo Posadas; ArgentinaFil: Poli, Mario Andres. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Genética; Argentin

    Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle

    Get PDF
    Abstract Background Bovine leukemia virus (BLV) infection is omnipresent in dairy herds causing direct economic losses due to trade restrictions and lymphosarcoma-related deaths. Milk production drops and increase in the culling rate are also relevant and usually neglected. The BLV provirus persists throughout a lifetime and an inter-individual variation is observed in the level of infection (LI) in vivo. High LI is strongly correlated with disease progression and BLV transmission among herd mates. In a context of high prevalence, classical control strategies are economically prohibitive. Alternatively, host genomics studies aiming to dissect loci associated with LI are potentially useful tools for genetic selection programs tending to abrogate the viral spreading. The LI was measured through the proviral load (PVL) set–point and white blood cells (WBC) counts. The goals of this work were to gain insight into the contribution of SNPs (bovine 50KSNP panel) on LI variability and to identify genomics regions underlying this trait. Results We quantified anti–p24 response and total leukocytes count in peripheral blood from 1800 cows and used these to select 800 individuals with extreme phenotypes in WBCs and PVL. Two case-control genomic association studies using linear mixed models (LMMs) considering population stratification were performed. The proportion of the variance captured by all QC-passed SNPs represented 0.63 (SE ± 0.14) of the phenotypic variance for PVL and 0.56 (SE ± 0.15) for WBCs. Overall, significant associations (Bonferroni’s corrected -log10p > 5.94) were shared for both phenotypes by 24 SNPs within the Bovine MHC. Founder haplotypes were used to measure the linkage disequilibrium (LD) extent (r2 = 0.22 ± 0.27 at inter-SNP distance of 25−50 kb). The SNPs and LD blocks indicated genes potentially associated with LI in infected cows: i.e. relevant immune response related genes (DQA1, DRB3, BOLA-A, LTA, LTB, TNF, IER3, GRP111, CRISP1), several genes involved in cell cytoskeletal reorganization (CD2AP, PKHD1, FLOT1, TUBB5) and modelling of the extracellular matrix (TRAM2, TNXB). Host transcription factors (TFs) were also highlighted (TFAP2D; ABT1, GCM1, PRRC2A). Conclusions Data obtained represent a step forward to understand the biology of BLV–bovine interaction, and provide genetic information potentially applicable to selective breeding programs
    corecore