81 research outputs found

    Rapid Differential Diagnosis between Extrapulmonary Tuberculosis and Focal Complications of Brucellosis Using a Multiplex Real-Time PCR Assay

    Get PDF
    BACKGROUND: Arduous to differ clinically, extrapulmonary tuberculosis and focal complications of brucellosis remain important causes of morbidity and mortality in many countries. We developed and applied a multiplex real-time PCR assay (M RT-PCR) for the simultaneous detection of Mycobacterium tuberculosis complex and Brucella spp. METHODOLOGY: Conventional microbiological techniques and M RT-PCR for M. tuberculosis complex and Brucella spp were performed on 45 clinical specimens from patients with focal complications of brucellosis or extrapulmonary tuberculosis and 26 control samples. Fragments of 207 bp and 164 bp from the conserved region of the genes coding for an immunogenic membrane protein of 31 kDa of B. abortus (BCSP31) and the intergenic region SenX3-RegX3 were used for the identification of Brucella and M. tuberculosis complex, respectively. CONCLUSIONS: The detection limit of the M RT-PCR was 2 genomes per reaction for both pathogens and the intra- and inter-assay coefficients of variation were 0.44% and 0.93% for Brucella and 0.58% and 1.12% for Mycobacterium. M RT-PCR correctly identified 42 of the 45 samples from patients with tuberculosis or brucellosis and was negative in all the controls. Thus, the overall sensitivity, specificity, PPV and NPV values of the M RT PCR assay were 93.3%, 100%, 100% and 89.7%, respectively, with an accuracy of 95.8% (95% CI, 91.1%-100%). Since M RT-PCR is highly reproducible and more rapid and sensitive than conventional microbiological tests, this technique could be a promising and practical approach for the differential diagnosis between extrapulmonary tuberculosis and focal complications of brucellosis

    Characterization of the human exposome by a comprehensive and quantitative large scale multi-analyte metabolomics platform

    Get PDF
    The exposome, defined as the cumulative measure of external exposures and associated biological responses throughout the lifespan, has emerged in recent years as a cornerstone in biomedical sciences. Metabolomics stands out here as one of the most powerful tools for investigating the interplay between the genetic background, exogenous, and endogenous factors within human health. However, to address the complexity of the exposome, novel methods are needed to characterize the human metabolome. In this work, we have optimized and validated a multianalyte metabolomics platform for large-scale quantitative exposome research in plasma and urine samples, based on the use of simple extraction methods and high-throughput metabolomic fingerprinting. The methodology enables, for the first time, the simultaneous characterization of the endogenous metabolome, food-related metabolites, pharmaceuticals, household chemicals, environmental pollutants, and microbiota derivatives, comprising more than 1000 metabolites in total. This comprehensive and quantitative investigation of the exposome is achieved in short run times, through simple extraction methods requiring small-sample volumes, and using integrated quality control procedures for ensuring data quality. This metabolomics approach was satisfactorily validated in terms of linearity, recovery, matrix effects, specificity, limits of quantification, intraday and interday precision, and carryover. Furthermore, the clinical potential of the methodology was demonstrated in a dietary intervention trial as a case study. In summary, this study describes the optimization, validation, and application of a multimetabolite platform for comprehensive and quantitative metabolomics-based exposome research with great utility in large-scale epidemiological studies

    Benefits of polyphenols on gut microbiota and implications in human health

    Get PDF
    The biological properties of dietary polyphenols are greatly dependent on their bioavailability that, in turn, is largely influenced by their degree of polymerization. The gut microbiota play a key role in modulating the production, bioavailability and, thus, the biological activities of phenolic metabolites, particularly after the intake of food containing high-molecular-weight polyphenols. In addition, evidence is emerging on the activity of dietary polyphenols on the modulation of the colonic microbial population composition or activity. However, although the great range of health-promoting activities of dietary polyphenols has been widely investigated, their effect on the modulation of the gut ecology and the two-way relationship 'polyphenols ↔ microbiota' are still poorly understood. Only a few studies have examined the impact of dietary polyphenols on the human gut microbiota, and most were focused on single polyphenol molecules and selected bacterial populations. This review focuses on the reciprocal interactions between the gut microbiota and polyphenols, the mechanisms of action and the consequences of these interactions on human health

    Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients.

    Get PDF
    This study evaluated the possible prebiotic effect of a moderate intake of red wine polyphenols on the modulation of the gut microbiota composition and the improvement in the risk factors for the metabolic syndrome in obese patients. Ten metabolic syndrome patients and ten healthy subjects were included in a randomized, crossover, controlled intervention study. After a washout period, the subjects consumed red wine and de-alcoholized red wine over a 30 day period for each. The dominant bacterial composition did not differ significantly between the study groups after the two red wine intake periods. In the metabolic syndrome patients, red wine polyphenols significantly increased the number of fecal bifidobacteria and Lactobacillus (intestinal barrier protectors) and butyrate-producing bacteria (Faecalibacterium prausnitzii and Roseburia) at the expense of less desirable groups of bacteria such as LPS producers (Escherichia coli and Enterobacter cloacae). The changes in gut microbiota in these patients could be responsible for the improvement in the metabolic syndrome markers. Modulation of the gut microbiota by using red wine could be an effective strategy for managing metabolic diseases associated with obesity

    Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes

    Get PDF
    Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbialhost co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbialhost crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders

    Endotoxin increase after fat overload is related to postprandial hypertriglyceridemia in morbidly obese patients.

    Get PDF
    The low-grade inflammation observed in obesity has been associated with a high-fat diet, though this relation is not fully understood. Bacterial endotoxin, produced by gut microbiota, may be the linking factor. However, this has not been confirmed in obese patients. To study the relationship between a high-fat diet and bacterial endotoxin, we analyzed postprandial endotoxemia in morbidly obese patients after a fat overload. The endotoxin levels were determined in serum and the chylomicron fraction at baseline and 3 h after a fat overload in 40 morbidly obese patients and their levels related with the degree of insulin resistance and postprandial hypertriglyceridemia. The morbidly obese patients with the highest postprandial hypertriglyceridemia showed a significant increase in lipopolysaccharide (LPS) levels in serum and the chylomicron fraction after the fat overload. Postprandial chylomicron LPS levels correlated positively with the difference between postprandial triglycerides and baseline triglycerides. There were no significant correlations between C-reactive protein (CRP) and LPS levels. The main variables contributing to serum LPS levels after fat overload were baseline and postprandial triglyceride levels but not glucose or insulin resistance. Additionally, superoxide dismutase activity decreased significantly after the fat overload. Postprandial LPS increase after a fat overload is related to postprandial hypertriglyceridemia but not to degree of insulin resistance in morbidly obese patients

    Phenolic and microbial-targeted metabolomics to discovering and evaluating wine intake biomarkers in human urine and plasma

    Get PDF
    The discovery of biomarkers of intake in nutritional epidemiological studies is essential in establishing an association between dietary intake (considering their bioavailability) and diet-related risk factors for diseases. The aim is to study urine and plasma phenolic and microbial profile by targeted metabolomics approach in a wine intervention clinical trial for discovering and evaluating food intake biomarkers. High-risk male volunteers (n = 36) were included in a randomized, crossover intervention clinical trial. After a washout period, subjects received red wine or gin, or dealcoholized red wine over four weeks. Fasting plasma and 24-h urine were collected at baseline and after each intervention period. A targeted metabolomic analysis of 70 host and microbial phenolic metabolites was performed using ultra performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS). Metabolites were subjected to stepwise logistic regression to establish prediction models and received operation curves were performed to evaluate biomarkers. Prediction models based mainly on gallic acid metabolites, obtained sensitivity, specificity and area under the curve (AUC) for the training and validation sets of between 91 and 98% for urine and between 74 and 91% for plasma. Resveratrol, ethylgallate and gallic acid metabolite groups in urine samples also resulted in being good predictors of wine intake (AUC>87%). However, lower values for metabolites were obtained in plasma samples. The highest correlations between fasting plasma and urine were obtained for the prediction model score (r = 0.6, P<0.001), followed by gallic acid metabolites (r = 0.5-0.6, P<0.001). This study provides new insights into the discovery of food biomarkers in different biological samples

    Influence of the microbiome on radiotherapy-induced oral mucositis and its management: A comprehensive review

    Get PDF
    Radiation-induced mucositis is the most common, debilitating and painful acute toxicity associated with active treatment in head and neck cancer area, severely affecting more than 65% of patients. Oral microbiota significantly changes during cancer therapy and appears to be involved on its pathophysiology. This review aims to present a comprehensive update of new etiopathogenic factors and treatments that may decrease the incidence of mucositis, mainly modifications of dietary interventions to modify microbiome. Despite advances in recent years, its management is mainly symptomatic opioid-based with variable results on different substances analyzed for its prevention. Immunonutrition seems to play a significant role, particularly the supplementation of compounds such as fatty acids, polyphenols or selected probiotics have shown to promote commensal bacteria diversity and reduced incidence of ulcerative mucositis. Modification of the microbiome is a promising preventive treatment for mucositis although its evidence is still scarce. Large studies are needed to demonstrate the efficacy of interventions on microbiome and its clinical impact on radiation-induced mucositis.Funding for open access charge: Universidad de MĂĄlaga / CBUA

    Development of in vitro and in vivo tools to evaluate the antiangiogenic potential of melatonin to neutralize the angiogenic effects of VEGF and breast cancer cells: CAM assay and 3D endothelial cell spheroids

    Get PDF
    Melatonin is a molecule with different antitumor actions in breast cancer and has been described as an inhibitor of vascular endothelial growth factor (VEGF). Despite the recognition of the key role exerted by VEGF in tumor angiogenesis, limitations arise when developing models to test new antiangiogenic molecules. Thus, the aim of this study was to develop rapid, economic, high capacity and easy handling angiogenesis assays to test the antiangiogenic effects of melatonin and demonstrate its most effective dose to neutralize and interfere with the angiogenic sprouting effect induced by VEGF and MCF-7. To perform this, 3D endothelial cell (HUVEC) spheroids and a chicken embryo chorioallantoic membrane (CAM) assay were used. The results showed that VEGF and MCF-7 were able to stimulate the sprouting of the new vessels in 3D endothelial spheroids and the CAM assay, and that melatonin had an inhibitory effect on angiogenesis. Specifically, as the 1 mM pharmacological dose was the only effective dose able to inhibit the formation of ramifications around the alginate in the CAM assay model, this inhibition was shown to occur in a dose-dependent manner. Taken together, these techniques represent novel tools for the development of antiangiogenic molecules such as melatonin, with possible implications for the therapy of breast cancer.Funding: This work was funded in part by PE-0106–2019 from the Consejería de Salud de la Junta de Andalucía, C19047–2018 from Fundación Unicaja and UMA18-FEDERJA-042 from UMA-FEDER & ALIANZA MIXTA ANDALUCÍA-ROCHE. Alicia González González is a recipient of a postdoctoral grant Margarita Salas (RMS-08) from European Union-NextGenerationEU, Spanish Ministry of Universities and Recovery Transformation and Resilience Plan, through a call from University of Cantabria. Aurora Laborda Illanes is a recipient of a predoctoral grant, PFIS-ISCIII (FI19–00112), co-funded by the Fondo Social Europeo (FSE). Lidia Sanchez Alcoholado is a recipient of a postdoctoral grant (RH-0026–2021) from the Consejería de Salud y Familia (co-funded by the Fondo Europeo de Andalucía 2014–2020, Andalucía, Spain). Daniel Castellano Castillo is a recipient of a postdoctoral grant Sara Borrell (CD21/00164) from Instituto de Salud Carlos III

    Beneficial effects of essential oils from the mediterranean diet on gut microbiota and their metabolites in ischemic heart disease and type-2 diabetes mellitus

    Get PDF
    [Abstract] Ischemic heart disease (IHD) and type-2 diabetes mellitus (T2DM) remain major health problems worldwide and commonly coexist in individuals. Gut microbial metabolites, such as trimethylamine N-oxide (TMAO) and short-chain fatty acids (SCFAs), have been linked to cardiovascular and metabolic diseases. Previous studies have reported dysbiosis in the gut microbiota of these patients and the prebiotic effects of some components of the Mediterranean diet. Essential oil emulsions of savory (Satureja hortensis), parsley (Petroselinum crispum) and rosemary (Rosmarinus officinalis) were assessed as nutraceuticals and prebiotics in IHD and T2DM. Humanized mice harboring gut microbiota derived from that of patients with IHD and T2DM were supplemented with L-carnitine and orally treated with essential oil emulsions for 40 days. We assessed the effects on gut microbiota composition and abundance, microbial metabolites and plasma markers of cardiovascular disease, inflammation and oxidative stress. Our results showed that essential oil emulsions in mice supplemented with L-carnitine have prebiotic effects on beneficial commensal bacteria, mainly Lactobacillus genus. There was a decrease in plasma TMAO and an increase in fecal SCFAs levels in mice treated with parsley and rosemary essential oils. Thrombomodulin levels were increased in mice treated with savory and parsley essential oils. While mice treated with parsley and rosemary essential oils showed a decrease in plasma cytokines (INFɣ, TNFα, IL-12p70 and IL-22); savory essential oil was associated with increased levels of chemokines (CXCL1, CCL2 and CCL11). Finally, there was a decrease in protein carbonyls and pentosidine according to the essential oil emulsion. These results suggest that changes in the gut microbiota induced by essential oils of parsley, savory and rosemary as prebiotics could differentially regulate cardiovascular and metabolic factors, which highlights the potential of these nutraceuticals for reducing IHD risk in patients affected by T2DM.Junta de Andalucía; PI-0170-2018Instituto de Salud Carlos III; PT20/00101Junta de Andalucía; RH-0078-2021Instituto de Salud Carlos III; CPII19/00022Instituto de Salud Carlos III; FI20/0022
    • 

    corecore