7 research outputs found

    An Atypical Riboflavin Pathway Is Essential for Brucella abortus Virulence

    Get PDF
    Brucellosis is a worldwide zoonosis that affects livestock and humans and is caused by closely related Brucella spp., which are adapted to intracellular life within cells of a large variety of mammals. Brucella can be considered a furtive pathogen that infects professional and non-professional phagocytes. In these cells Brucella survives in a replicative niche, which is characterized for having a very low oxygen tension and being deprived from nutrients such as amino acids and vitamins. Among these vitamins, we have focused on riboflavin (vitamin B2). Flavin metabolism has been barely implicated in bacterial virulence. We have recently described that Brucella and other Rhizobiales bear an atypical riboflavin metabolic pathway. In the present work we analyze the role of the flavin metabolism on Brucella virulence. Mutants on the two lumazine synthases (LS) isoenzymes RibH1 and RibH2 and a double RibH mutant were generated. These mutants and different complemented strains were tested for viability and virulence in cells and in mice. In this fashion we have established that at least one LS must be present for B. abortus survival and that RibH2 and not RibH1 is essential for intracellular survival due to its LS activity in vivo. In summary, we show that riboflavin biosynthesis is essential for Brucella survival inside cells or in mice. These results highlight the potential use of flavin biosynthetic pathway enzymes as targets for the chemotherapy of brucellosis

    Brucella abortus Choloylglycine Hydrolase Affects Cell Envelope Composition and Host Cell Internalization

    Get PDF
    Choloylglycine hydrolase (CGH, E.C. 3.5.1.24) is a conjugated bile salt hydrolase that catalyses the hydrolysis of the amide bond in conjugated bile acids. Bile salt hydrolases are expressed by gastrointestinal bacteria, and they presumably decrease the toxicity of host's conjugated bile salts. Brucella species are the causative agents of brucellosis, a disease affecting livestock and humans. CGH confers Brucella the ability to deconjugate and resist the antimicrobial action of bile salts, contributing to the establishment of a successful infection through the oral route in mice. Additionally, cgh-deletion mutant was also attenuated in intraperitoneally inoculated mice, which suggests that CGH may play a role during systemic infection other than hydrolyzing conjugated bile acids. To understand the role CGH plays in B. abortus virulence, we infected phagocytic and epithelial cells with a cgh-deletion mutant (Δcgh) and found that it is defective in the internalization process. This defect along with the increased resistance of Δcgh to the antimicrobial action of polymyxin B, prompted an analysis of the cell envelope of this mutant. Two-dimensional electrophoretic profiles of Δcgh cell envelope-associated proteins showed an altered expression of Omp2b and different members of the Omp25/31 family. These results were confirmed by Western blot analysis with monoclonal antibodies. Altogether, the results indicate that Brucella CGH not only participates in deconjugation of bile salts but also affects overall membrane composition and host cell internalization

    Brucella abortus Encodes an Active Rhomboid Protease: Proteome Response after Rhomboid Gene Deletion

    No full text
    Rhomboids are intramembrane serine proteases highly conserved in the three domains of life. Their key roles in eukaryotes are well understood but their contribution to bacterial physiology is still poorly characterized. Here we demonstrate that Brucella abortus, the etiological agent of the zoonosis called brucellosis, encodes an active rhomboid protease capable of cleaving model heterologous substrates like Drosophila melanogaster Gurken and Providencia stuartii TatA. To address the impact of rhomboid deletion on B. abortus physiology, the proteomes of mutant and parental strains were compared by shotgun proteomics. About 50% of the B. abortus predicted proteome was identified by quantitative proteomics under two experimental conditions and 108 differentially represented proteins were detected. Membrane associated proteins that showed variations in concentration in the mutant were considered as potential rhomboid targets. This class included nitric oxide reductase subunit C NorC (Q2YJT6) and periplasmic protein LptC involved in LPS transport to the outer membrane (Q2YP16). Differences in secretory proteins were also addressed. Differentially represented proteins included a putative lytic murein transglycosylase (Q2YIT4), nitrous-oxide reductase NosZ (Q2YJW2) and high oxygen affinity Cbb3-type cytochrome c oxidase subunit (Q2YM85). Deletion of rhomboid had no obvious effect in B. abortus virulence. However, rhomboid overexpression had a negative impact on growth under static conditions, suggesting an effect on denitrification enzymes and/or high oxygen affinity cytochrome c oxidase required for growth in low oxygen tension conditions

    Proteomics of Brucella

    No full text
    Brucella\it Brucella spp. are Gram negative intracellular bacteria responsible for brucellosis, a worldwide distributed zoonosis. A prominent aspect of the Brucella life cycle is its ability to invade, survive and multiply within host cells. Comprehensive approaches, such as proteomics, have aided in unravelling the molecular mechanisms underlying Brucella pathogenesis. Technological and methodological advancements such as increased instrument performance and multiplexed quantification have broadened the range of proteome studies, enabling new and improved analyses, providing deeper and more accurate proteome coverage. Indeed, proteomics has demonstrated its contribution to key research questions in Brucella biology, i.e., immunodominant proteins, host-cell interaction, stress response, antibiotic targets and resistance, protein secretion. Here, we review the proteomics of Brucella with a focus on more recent works and novel findings, ranging from reconfiguration of the intracellular bacterial proteome and studies on proteomic profiles of Brucella infected tissues, to the identification of Brucella extracellular proteins with putative roles in cell signaling and pathogenesis. In conclusion, proteomics has yielded copious new candidates and hypotheses that require future verification. It is expected that proteomics will continue to be an invaluable tool for Brucella and applications will further extend to the currently ill-explored aspects including, among others, protein processing and post-translational modification

    In search of Brucella abortus type IV secretion substrates: screening and identification of four proteins translocated into host cells through VirB system.

    No full text
    International audienceType IV secretion systems (T4SS) are specialized protein complexes used by many bacterial pathogens for the delivery of effector molecules that subvert varied host cellular processes. Brucella spp. are facultative intracellular pathogens capable of survival and replication inside mammalian cells. Brucella T4SS (VirB) is essential to subvert lysosome fusion and to create an organelle permissive for replication. One possible role for VirB is to translocate effector proteins that modulate host cellular functions for the biogenesis of the replicative organelle. We hypothesized that proteins with eukaryotic domains or protein-protein interaction domains, among others, would be good candidates for modulation of host cell functions. To identify these candidates, we performed an in silico screen looking for proteins with distinctive features. Translocation of 84 potential substrates was assayed using adenylate cyclase reporter. By this approach, we identified six proteins that are delivered to the eukaryotic cytoplasm upon infection of macrophage-like cells and we could determine that four of them, encoded by genes BAB1_1043, BAB1_2005, BAB1_1275 and BAB2_0123, require a functional T4SS for their delivery. We confirmed VirB-mediated translocation of one of the substrates by immunofluorescence confocal microscopy, and we found that the N-terminal 25 amino acids are required for its delivery into cells

    A T4SS Effector Targets Host Cell Alpha-Enolase Contributing to Brucella abortus Intracellular Lifestyle

    Get PDF
    Brucella abortus, the causative agent of bovine brucellosis, invades and replicates within cells inside a membrane-bound compartment known as the Brucella containing vacuole (BCV). After trafficking along the endocytic and secretory pathways, BCVs mature into endoplasmic reticulum-derived compartments permissive for bacterial replication. Brucella Type IV Secretion System (VirB) is a major virulence factor essential for the biogenesis of the replicative organelle. Upon infection, Brucella uses the VirB system to translocate effector proteins from the BCV into the host cell cytoplasm. Although the functions of many translocated proteins remain unknown, some of them have been demonstrated to modulate host cell signaling pathways to favor intracellular survival and replication. BPE123 (BAB2_0123) is a B. abortus VirB-translocated effector protein recently identified by our group whose function is yet unknown. In an attempt to identify host cell proteins interacting with BPE123, a pull-down assay was performed and human alpha-enolase (ENO-1) was identified by LC/MS-MS as a potential interaction partner of BPE123. These results were confirmed by immunoprecipitation assays. In bone-marrow derived macrophages infected with B. abortus, ENO-1 associates to BCVs in a BPE123-dependent manner, indicating that interaction with translocated BPE123 is also occurring during the intracellular phase of the bacterium. Furthermore, ENO-1 depletion by siRNA impaired B. abortus intracellular replication in HeLa cells, confirming a role for alpha-enolase during the infection process. Indeed, ENO-1 activity levels were enhanced upon B. abortus infection of THP-1 macrophagic cells, and this activation is highly dependent on BPE123. Taken together, these results suggest that interaction between BPE123 and host cell ENO-1 contributes to the intracellular lifestyle of B. abortus
    corecore