75 research outputs found

    Lactic Acid Fermentation of Peppers

    Get PDF
    Different peppers fermentations (Capsicum annum, grossum variety) were assayed: spontaneous, native microflora sup- plemented individually with Lactobacillus plantarum N8, Leuconostoc mesentereroides L. or Pediococcus pentosaceus 12p and by pure or combined cultures of these lactic acid bacteria (LAB). In order to eliminate the native flora, different kinds of heat treatment were assayed. The treatment selected was heating in autoclaved after research 3/4 atmosphere and to turn off. Fermentations were carried out at 22°C and 30°C and the culture media contained 2% or 0.2% glucose and 4% NaCl. Sugar consumption, pH reduction and acid production were higher at 30°C than at 22°C. At both tem- peratures, spontaneous fermentation showed a slower rate reduction in pH than inoculated samples. Diminution in pH in presence of 2% glucose was faster than at 0.2%, but minimum pH was in both case lower than 3.0. Maximum growth was reached between 2 and 5 days of fermentation in all the samples assayed. After 30 days of incubation in presence of 2% glucose the survival of LAB was nearly 5 log ufc/ml. The survival was higher at the lower temperature assayed for both glucose concentrations. Organoleptic properties of peppers fermented with a mixed culture of Leuconostoc mes- enteroides and Pediococcus pentosaceus were found best by a human panel. This sample has a relation lactic acid/acetic acid of nearly 3 in the conditions assayed.Fil: Alberto, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán; ArgentinaFil: Perera, María Francisca. Universidad Nacional de Tucumán. Facultad de Bioquímica, Química y Farmacia; ArgentinaFil: Arena, Mario Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Quimica del Noroeste; Argentina. Universidad Nacional de Tucumán; Argentin

    Genetic diversity among viruses associated with sugarcane mosaic disease in Tucumán, Argentina

    Get PDF
    Sugarcane leaves with mosaic symptoms were collected in 2006--07 in Tucumán (Argentina) and analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) and sequencing of a fragment of the Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) coat protein (CP) genes. SCMV was detected in 96.6% of samples, with 41% showing the RFLP profile consistent with strain E. The remaining samples produced eight different profiles that did not match other known strains. SCMV distribution seemed to be more related to sugarcane genotype than to geographical origin, and sequence analyses of CP genes showed a greater genetic diversity compared with other studies. SrMV was detected in 63.2% of samples and most of these were also infected by SCMV, indicating that, unlike other countries and other Argentinean provinces, where high levels of co-infection are infrequent, co-existence is common in Tucumán. RFLP analysis showed the presence of SrMV strains M (68%) and I (14%), while co-infection between M and H strains was present in 18% of samples. Other SCMV subgroup members and the Sugarcane streak mosaic virus (SCSMV) were not detected. Our results also showed that sequencing is currently the only reliable method to assess SCMV and SrMV genetic diversity, because RT-PCR-RFLP may not be sufficiently discriminating.Fil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Filippone, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Ramallo, C. J.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Cuenya, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Garcia, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Ploper, Leonardo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin

    Genetic diversity among viruses associated with sugarcane mosaic disease in Tucumán, Argentina

    Get PDF
    Sugarcane leaves with mosaic symptoms were collected in 2006--07 in Tucumán (Argentina) and analyzed by reverse-transcriptase polymerase chain reaction (RT-PCR) restriction fragment length polymorphism (RFLP) and sequencing of a fragment of the Sugarcane mosaic virus (SCMV) and Sorghum mosaic virus (SrMV) coat protein (CP) genes. SCMV was detected in 96.6% of samples, with 41% showing the RFLP profile consistent with strain E. The remaining samples produced eight different profiles that did not match other known strains. SCMV distribution seemed to be more related to sugarcane genotype than to geographical origin, and sequence analyses of CP genes showed a greater genetic diversity compared with other studies. SrMV was detected in 63.2% of samples and most of these were also infected by SCMV, indicating that, unlike other countries and other Argentinean provinces, where high levels of co-infection are infrequent, co-existence is common in Tucumán. RFLP analysis showed the presence of SrMV strains M (68%) and I (14%), while co-infection between M and H strains was present in 18% of samples. Other SCMV subgroup members and the Sugarcane streak mosaic virus (SCSMV) were not detected. Our results also showed that sequencing is currently the only reliable method to assess SCMV and SrMV genetic diversity, because RT-PCR-RFLP may not be sufficiently discriminating.Instituto de Biotecnologia y Biologia Molecula

    Assessment of inoculation techniques for screening sugarcane resistance to red stripe disease caused by Acidovorax avenae subsp. avenae

    Get PDF
    The red stripe disease caused by Acidovorax avenae subsp. avenae in sugarcane, has become a quite relevant issue in Argentina because of its high incidence in the sugarcane growing area. The resistance of host plants is the most promising method for controlling the disease. In that sense, the Estación Experimental Agroindustrial Obispo Colombres (EEAOC) has a Sugarcane Breeding Program, which generates new varieties with higher productivity and good sanitary behavior. The lack of an effective screening technique to select resistant sugarcane genotypes limits the cultivar selection process. To develop a practical and affordable method for achieving the expression of the red stripe disease, three available inoculation techniques were evaluated under controlled conditions over two sugarcane varieties, with a previously adjustment of soil composition and nutrition and relative humidity. They consisted in (i) scrubbing the leaf surface with a cotton ball soaked in the suspension of A. avenae subsp. avenae; and spraying inoculum under two conditions: (ii) leaves pre-treated with a refined sand scarification and (iii) leaves with no scarification. Fifteen plants were inoculated per cultivar and treatment according to a randomized protocol with three replicates and the severity of the disease was evaluated on a scale of 1- 9 according to the International Society of Sugarcane Technologists. The spray inoculation using a bacterial suspension of A. avenae subsp. avenae without abrasives was also field tested. These results contribute to sugarcane breeding programs, providing a tool to assess the resistance to red stripe of their materials, overcoming the lack of bacterial pressure or favorable conditions for the disease.Fil: Bertani, Romina Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Joya, Constanza María. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Henriquez, Diego Daniel. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Funes, Claudia. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: González, Victoria. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Cuenya, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentin

    Diversidad genética de cultivares de caña de azúcar determinada por marcadores de ADN y caracteres morfológicos

    Get PDF
    Un mejor conocimiento de la diversidad genética de la caña de azúcar proveerá información útil sobre el valor de los genotipos para los programas de mejoramiento y contribuirá tanto a hacer un más eficiente uso y conservación de los recursos genéticos, como a asegurar los derechos de propiedad intelectual de los creadores de nuevas variedades. Si bien los descriptores morfológicos constituyen las herramientas más tradicionales para caracterizar a las variedades, pueden presentar variaciones fenotípicas causadas por factores ambientales. Por este motivo los marcadores moleculares son cada vez más importantes en la identificación de genotipos y la estimación de la diversidad, debido a su precisión, abundancia e independencia de factores ambientales. El objetivo de este trabajo fue evaluar genotipos empleados como padres en el Programa de Mejoramiento de la Caña de Azúcar de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC), usando marcadores moleculares (AFLP y SSR) y caracteres morfológicos y comparando los datos obtenidos con dos programas informáticos estadísticos (NTSys e InfoStat). Todos los cultivares se agruparon en un mismo grupo con ambos programas, cuando se emplearon al menos 150 datos. Probablemente debido al intercambio regular de germoplasma, no se observó una clara diferenciación genética entre los genotipos locales y las variedades de los EE. UU., que se agruparon juntos. Aunque los caracteres morfológicos reflejan solamente la semejanza externa, la topología del dendrograma no se modificó cuando se combinaron datos moleculares y morfológicos. Estos resultados sugieren que ambos métodos de caracterización deberían ser utilizados para estimar la diversidad genética y que los marcadores moleculares deberían ser incluidos a un nivel internacional, para proteger las nuevas variedades de caña de azúcar.Better knowledge of sugarcane genetic diversity will provide useful information concerning genotypic value for breeding programs and should help to improve the use and conservation of genetic resources and the protection of sugarcane varieties by intellectual property rights. Morphological descriptors are traditional tools to characterise varieties; however, they vary phenotypically because of environmental effects. Therefore, molecular markers have become increasingly important for identifying genotypes and estimating diversity, as they are accurate, readily available, and are not affected by the environment. The aim of this research was to evaluate genotypes used as parental materials in the Sugarcane Breeding Program of Estación Experimental Agroindustrial Obispo Colombres (EEAOC), Argentina, by using molecular markers (AFLP and SSR) and morphological traits, and by comparing the data obtained with two statistical software programs (NTSys and InfoStat). All cultivars grouped in one main cluster of the dendrogram when using both programs and at least 150 data points. Local Argentine genotypes grouped together with US-varieties and no clear genetic differentiation was found, probably due to regular germplasm exchange. Although morphological traits reflected external resemblance only, the topology of the dendrogram was not modified when combining both molecular and morphological data. These results suggest that both characterisation methods should be used to estimate genetic diversity. Molecular markers should be included internationally for sugarcane variety protection.Fil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Arias, Marta E.. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales E Instituto Miguel Lillo; ArgentinaFil: Costilla, Diego D.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Luque, Catalina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales E Instituto Miguel Lillo; ArgentinaFil: García, María B.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Racedo, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Cuenya, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Filippone, María Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; Argentin

    Genetic Transformation of Sugarcane, Current Status and Future Prospects

    Get PDF
    Sugarcane (Saccharum spp.) is a tropical and sub-tropical, vegetative-propagated crop that contributes to approximately 80% of the sugar and 40% of the world’s biofuel production. Modern sugarcane cultivars are highly polyploid and aneuploid hybrids with extremely large genomes (>10 Gigabases), that have originated from artificial crosses between the two species, Saccharum officinarum and S. spontaneum. The genetic complexity and low fertility of sugarcane under natural growing conditions make traditional breeding improvement extremely laborious, costly and time-consuming. This, together with its vegetative propagation, which allows for stable transfer and multiplication of transgenes, make sugarcane a good candidate for crop improvement through genetic engineering. Genetic transformation has the potential to improve economically important properties in sugarcane as well as diversify sugarcane beyond traditional applications, such as sucrose production. Traits such as herbicide, disease and insect resistance, improved tolerance to cold, salt and drought and accumulation of sugar and biomass have been some of the areas of interest as far as the application of transgenic sugarcane is concerned. Although there have been much interest in developing transgenic sugarcane there are only three officially approved varieties for commercialization, all of them expressing insect-resistance and recently released in Brazil. Since the early 1990’s, different genetic transformation systems have been successfully developed in sugarcane, including electroporation, Agrobacterium tumefaciens and biobalistics. However, genetic transformation of sugarcane is a very laborious process, which relies heavily on intensive and sophisticated tissue culture and plant generation procedures that must be optimized for each new genotype to be transformed. Therefore, it remains a great technical challenge to develop an efficient transformation protocol for any sugarcane variety that has not been previously transformed. Additionally, once a transgenic event is obtained, molecular studies required for a commercial release by regulatory authorities, which include transgene insertion site, number of transgenes and gene expression levels, are all hindered by the genomic complexity and the lack of a complete sequenced reference genome for this crop. The objective of this review is to summarize current techniques and state of the art in sugarcane transformation and provide information on existing and future sugarcane improvement by genetic engineering.Fil: Budeguer, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Enrique, Ramón Atanasio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Racedo, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Noguera, Aldo Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Welin, Björn. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin

    TRAP markers allow the identification of sugarcane transgenic lines that are genetically close to their parental genotype

    Get PDF
    Los marcadores moleculares son útiles para determinar la presencia de cambios genéticos durante el proceso de transformación. Entre ellos, los marcadores funcionales distribuidos al azar en todo el genoma pueden reflejar variaciones genéticas de interés directo. Por este motivo, el objetivo de este trabajo fue determinar la similitud con la variedad de caña de azúcar sin transformar de diferentes eventos transgénicos mediante el uso de marcadores TRAP (“Target Region Amplified Polymorphism”). Para ello, ADNs provenientes de los eventos transgénicos, los genotipos sin transformar y de otras variedades de caña de azúcar se caracterizaron mediante amplificación con siete a nueve combinaciones de cebadores TRAP. Los marcadores se separaron mediante electroforesis en geles de poliacrilamida en condiciones desnaturalizantes en el equipo Li-cor DNA Analyzer. Los fragmentos amplificados fueron transformados en matrices binarias de 0/1, utilizadas para calcular el coeficiente de Jaccard y construir árboles de similitud. En primer lugar, los marcadores permitieron confirmar las evaluaciones fenotípicas preliminares de eventos resistentes al herbicida glifosato de la variedad RA 87-3, dado que aquellos eventos fenotípicamente similares a la variedad sin transformar no mostraron cambios genéticos o solo algunos menores, mientras que eventos con aberraciones de crecimiento presentaron un alto nivel de polimorfismo. La incorporación en el análisis de otros genotipos permitió validar internamente la técnica asegurando el análisis de un número significativo de bandas polimórficas. Considerando la precisión de esta metodología, se la aplicó de rutina para caracterizar eventos transgénicos de las variedades LCP 85-384, TUCCP 77-42, TUC 95-10 y TUC 03-12 en las primeras etapas del proceso de evaluación. En conclusión, el uso de marcadores TRAP constituye una estrategia rápida y recomendable para caracterizar e identificar eventos transgénicos genéticamente próximos a su genotipo sin transformar. Esto posibilita la selección en las primeras etapas de evaluación de aquellos eventos más adecuados para realizar los ensayos a campo.Molecular markers could be useful to determine the occurrence of genetic changes during the genetic transformation process. Among them, functional markers randomly distributed throughout the genome may reflect genetic variations of direct interest. For this reason, the objective of this work was to determine similarity to parental genotype of sugarcane of different transgenic events by using Target Region Amplified Polymorphism (TRAP) markers. DNAs from transgenic events, wild type genotypes and other sugarcane varieties were characterized by seven to nine combinations of TRAP primers. Molecular markers were separated by electrophoresis on polyacrylamide denaturing gels in a DNA Analyzer (Li-cor). Amplified fragments were transformed into either a 0/1 matrix. Similarity was calculated by using Jaccard coefficient and dendrograms were generated. At first instance, markers confirmed the preliminary phenotypic evaluations of herbicide resistant events of RA 87-3 variety since transformed events with close growth resemblance to its parental variety exhibited none or only minor genetic changes whereas events with growth aberrations showed a significant degree of polymorphism. The incorporation of other genotypes allowed validating the technique assuring that a significant number of polymorphic bands were analyzed. Considering the accuracy of the methodology, it was routinely applied to characterize transgenic events of LCP 85-384, TUCCP 77-42, TUC 95-10 and TUC 03-12 at early stages of the process. In conclusion, the use of TRAP markers is a quick and recommendable strategy to characterize and identify transgenic events genetically close to their parental genotypes. This makes possible the selection at the first stages of evaluation of those of the most valuable events to carry out field tests.Fil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Ovejero, Silvia Natalia. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Racedo, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Noguera, Aldo Sergio. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Cuenya, María Inés. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin

    Detection of Sugarcane yellow leaf virus in commercial cultivars and the parental collection of the EEAOC breeding program in Tucumán, Argentina

    Get PDF
    El amarillamiento de la hoja, causado por el virus del amarillamiento de la caña de azúcar (SCYLV), está distribuido mundialmente en las regiones cañeras; sin embargo, se desconoce su incidencia y distribución en la Argentina. Por ello se plantearon dos grandes objetivos: i) analizar la distribución en el área cañera de Tucumán de SCYLV, caracterizar el virus y determinar la correlación entre la presencia del este y los síntomas de la enfermedad, y ii) evaluar el comportamiento de progenitores del Subprograma de Mejoramiento Genético de la Caña de Azúcar (SMGCA) de la Estación Experimental Agroindustrial Obispo Colombres (EEAOC) frente al virus, comparando metodologías de diagnóstico. Para cumplir el primer objetivo, se colectaron 146 muestras de hojas de caña de azúcar con y sin síntomas de amarillamiento, de variedades comerciales, clones avanzados en las etapas finales de selección y progenitores del SMGCA de la EEAOC, en la provincia de Tucumán, en 2011 y 2012. El SCYLV se detectó en 26 muestras mediante RT-PCR, todas correspondieron al genotipo BRA-PER del virus. El análisis filogenético del gen de la proteína de la cápside permitió la agrupación de razas y la distinción entre aislados. La correlación entre la presencia del virus y los síntomas de la enfermedad fue positiva, baja, pero estadísticamente significativa. Respecto al segundo objetivo, en 2013, 2015, 2016 y 2017 se tomaron muestras de los progenitores utilizados en el SMGCA y se diagnosticó la presencia de SCYLV mediante técnicas moleculares, empleando dos pares de cebadores, y serológicas. El 75% de los genotipos evaluados resultó libre del virus durante el período de evaluación considerado. Se detectó que la RT-PCR empleando los cebadores SCYLVf1/r1 sería más sensible que con el par YLS111/462 y que el diagnóstico molecular fue más sensible que el diagnóstico serológico.Fil: Bertani, Romina Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentina. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Joya, Constanza María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Henriquez, Diego Daniel. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Funes, Claudia. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Gonzalez, Victoria. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Cuenya, María Inés. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin

    Optimization of phenotyping system in sugarcane to evaluate different strategies against Diatraea saccharalis (Fabricius)

    Get PDF
    El barrenador de caña de azúcar Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) es la plaga más importante del cultivo en Tucumán, Argentina. Los estadios larvales más avanzados perforan los tallos facilitando la colonización de microorganismos que reducen indirectamente el rendimiento y la calidad del azúcar. El objetivo del presente trabajo fue optimizar sistemas de fenotipado de D. saccharalis en caña de azúcar, en condiciones controladas, con el fin de evaluar diferentes estrategias de manejo de la plaga. En primer lugar, diferentes números de larvas neonatas fueron colocadas en el cogollo de plantines de caña de azúcar de dos meses de edad de las variedades TUC 95-10, TUC 03-12 y LCP 85-384. Por otro lado, en plantas individuales de seis meses de edad de TUC 95-10 se inocularon 10 larvas de diferentes estadios y se determinó el número de perforaciones y de vainas dañadas, la longitud total del túnel y elsíntoma del corazón muerto. En ensayos in vitro se inocularon dos larvas neonatas en ápices caulinares extraídos de plantines y se determinó el porcentaje de supervivencia de larvas. Todos los ensayos se realizaron en condiciones controladas (28-30ºC; 50-70% de HR), con dos o tres repeticiones y con 5 - 10 unidades experimentales por tratamiento. En plantines se observó el síntoma del corazón muerto en todos los tratamientos con diferente número de larvas neonatas. Las plantas de seis meses de edad presentaron daños en vaina y tallo cuando se infestaron con los estadios larvales L2, L3 y L4, mientras que las larvas neonatas solo produjeron daño en la vaina. En los ensayos de laboratorio el porcentaje de supervivencia de larvas obtenido fue elevado. Los resultados sugieren que diferentes sistemas de fenotipado empleando material vegetal de distinta edad fueron optimizados y están disponibles para evaluar potenciales estrategias de manejo del barrenador.Sugarcane borer Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) is the most important sugarcane pest in Tucumán, Argentina. Older larvae bore into the stalks, facilitating microorganism colonization which indirectly reduces yield and quality of sugar. The aim of the present work was to optimize a sugarcane plant phenotyping method with D. saccharalis under controlled conditions to evaluate different strategies to manage the pest. Different numbers of neonate larvae were placed in the leaf whorl of sugarcane seedling (2-months-old) of cultivars TUC 95-10, TUC 03-12 and LCP 85-384. On the other hand, on single plants 6-month old of TUC 95-10, 10 larvae of several instars were added and the number of perforations and damaged sheath, the tunnel total length and the dead heart symptom were evaluated. In in vitro tests, immature leaf roll disks cut from seedlings were inoculated with two neonate larvae and the larval survival percentage was determined. Each assay was repeated twice or three times with 5 -10 replicates per treatment and conducted under controlled conditions (28-30ºC; 50-70% RH). In seedlings the symptom of the dead heart was observed in all the treatments with different larval number. In the case of the 6-month-old plants, damage in the sheath and stem were observed when infested with L2, L3 and L4 instars, whereas neonate larvae only produced sheath damage. In the laboratory tests, the survival percentage of larvae obtained was high. The results suggest that several methodologies were optimized to evaluate different types of plant material, which are available to study potential strategies for sugarcane borer management.Fil: Budeguer, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Michavila, Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Racedo, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Vera, Alejandro. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Noguera, Aldo Sergio. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Cuenya, María Inés. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán; Argentina. Gobierno de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin

    Genetic transformation of Acidovorax avenae subsp. avenae, the causal agent of Red stripe in sugarcane

    Get PDF
    La estría roja, cuyo agente causal es Acidovorax avenae subsp. avenae, es una de las principales enfermedades que afecta a la caña de azúcar en Tucumán. Hasta el momento poco se conoce sobre la colonización de la bacteria en la caña de azúcar y su movimiento durante la infección, por lo que el objetivo de este trabajo fue desarrollar herramientas para monitorear la bacteria durante el ciclo infectivo. Se evaluaron tres protocolos de transformación: químico, electroporación y conjugación, utilizando plásmidos con diferentes genes de proteínas fluorescentes y marcadores de selección. Las cepas de A. avenae subsp. avenae fueron evaluadas según la adquisición de resistencia a antibiótico y expresión de señal fluorescente. Además, se confirmó la identidad de los transformantes por PCR especie-específica. En este trabajo se obtuvieron bacterias con señal fluorescente estable únicamente por conjugación. Con el plásmido Aa::pHC60-gfp se obtuvo la mayor expresión de la proteína verde fluorescente gfp. Los ensayos in vitro mostraron que no hay diferencias entre el crecimiento de la cepa silvestre y transformada en medio líquido. Tanto las plantas infectadas con A. avenae subsp. avenae como con Aa::pHC60-gfp presentaron valores de incidencia y severidad similares 15 días después de la inoculación. Este es el primer estudio de expresión de un gen heterólogo en A. avenae subsp. avenae y representa una herramienta valiosa para el estudio de su biología y el proceso de colonización de caña de azúcar.Red stripe (causal agent Acidovorax avenae subsp. avenae) is one of the main diseases that affect the sugarcane crop in Tucumán. At the moment, the information on sugarcane colonization and movement of A. avenae subsp. avenae during infections is limited, so the aim of this study was to develop tools to monitor the bacteria during the disease cycle. Three transformation methods were tested: chemical, electroporation and conjugation using plasmids containing different fluorescent proteins and selective gen markers. Mutant A. avenae subsp. avenae strains were evaluated for antibiotic resistance and expression of fluorescence signals. In addition, their identity was confirmed by PCR specie-specific. In this study, only transformation by conjugation presented stable fluorescent expression in the bacterium. The Aa::pHC60- gfp showed the highest expression of the green fluorescent protein gfp. In vitro assays showed not difference between the growth of wild type strain and the mutant one in liquid media. Plants inoculated either with A. avenae subsp. avenae or Aa::pHC60-gfp presented comparable incidence and severity 15 days after inoculation. This is the first report of an A. avenae subsp. avenae mutant strain expressing a heterologous gene and represents a valuable tool to study the biology of the bacterium and its colonization in sugarcane.Fil: Bertani, Romina Priscila. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Mielnichuck, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Perera, María Francisca. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; ArgentinaFil: Gonzalez, Victoria del Valle. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); ArgentinaFil: Vojnov, Adrián Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Cuenya, María Inés. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (P); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Castagnaro, Atilio Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Provincia de Tucumán. Ministerio de Desarrollo Productivo. Estación Experimental Agroindustrial "Obispo Colombres" (p). Instituto de Tecnología Agroindustrial del Noroeste Argentino; Argentin
    corecore