20 research outputs found

    Draft Genome Sequence of JVAP01T, the Type Strain of the Novel Species Acinetobacter dijkshoorniae

    Get PDF
    Here, we report the draft genome sequence of the type strain of Acinetobacter dijkshoorniae, a novel human pathogen within the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Strain JVAP01T has an estimated genome size of 3.9 Mb, exhibits a 38.8% G+C content, and carries a plasmid with the blaNDM-1 carbapenemase gene

    Pathogenic Acinetobacter species including the novel Acinetobacter dijkshoorniae recovered from market meat in Peru

    Get PDF
    Species of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex are important human pathogens which can be recovered from animals and food, potential sources for their dissemination. The aim of the present study was to characterise the Acinetobacter isolates recovered from market meat samples in Peru. From July through August 2012, 138 meat samples from six traditional markets in Lima were cultured in Lysogeny and Selenite broths followed by screening of Gram-negative bacteria in selective media. Bacterial isolates were identified by MALDI-TOF MS and DNA-based methods and assessed for their clonal relatedness and antimicrobial susceptibility. Twelve Acinetobacter isolates were recovered from calf samples. All but one strain were identified as members of the clinically-relevant Acinetobacter calcoaceticus-Acinetobacter baumannii complex: 9 strains as Acinetobacter pittii, 1 strain as A. baumannii, and 1 strain as the recently described novel species A. dijkshoorniae. The remaining strain could not be identified at the species level unambiguously but all studies suggested close relatedness to A. bereziniae. All isolates were well susceptible to antibiotics. Based on macrorestriction analysis, six isolates were further selected and some of them were associated with novel MLST profiles. The presence of pathogenic Acinetobacter species in human consumption meat might pose a risk to public health as potential reservoirs for their further spread into the human population. Nevertheless, the Acinetobacter isolates from meat found in this study were not multidrug resistant and their prevalence was low. To our knowledge, this is also the first time that the A. dijkshoorniae species is reported in Peru

    Spread of ST348 Klebsiella pneumoniae producing NDM-1 in a peruvian hospital

    Get PDF
    The aim of this study was to characterize carbapenem-resistant Klebsiella pneumoniae (CR-Kp) isolates recovered from adults and children with severe bacteremia in a Peruvian Hospital in June 2018. Antimicrobial susceptibility was determined by disc/gradient diffusion and broth microdilution when necessary. Antibiotic resistance mechanisms were evaluated by PCR and DNA sequencing. Clonal relatedness was assessed using pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Plasmid typing was performed with a PCR-based method. Thirty CR-Kp isolates were recovered in June 2018. All isolates were non-susceptible to all -lactams, ciprofloxacin, gentamicin and trimethoprim-sulfamethoxazole, while mostly remaining susceptible to colistin, tigecycline, levofloxacin and amikacin. All isolates carried the blaNDM-1 gene and were extended spectrum -lactamase (ESBL) producers. PFGE showed four different pulsotypes although all isolates but two belonged to the ST348 sequence type, previously reported in Portugal. blaNDM-1 was located in an IncFIB-M conjugative plasmid. To our knowledge, this is the first report of an New Delhi metallo- -lactamase (NDM)-producing K. pneumoniae recovered from both children and adults in Lima, Peru, as well as the first time that the outbreak strain ST348 is reported in Peru and is associated with NDM. Studies providing epidemiological and molecular data on CR-Kp in Peru are essential to monitor their dissemination and prevent further spread

    Epidemiology and molecular characterization of multidrug-resistant Escherichia coli isolates harboring blaCTX-M group 1 extended-spectrum β-lactamases causing bacteremia and urinary tract infection in Manhiça, Mozambique

    Get PDF
    Background: The emergence and spread of extended-spectrum β-lactamases (ESBLs), especially CTX-M, is an important public health problem with serious implications for low-income countries where second-line treatment is often unavailable. Knowledge of the local prevalence of ESBL is critical to define appropriate empirical therapeutic strategies for multidrug-resistant (MDR) organisms. This study aimed to assess and characterize the presence of ESBL and especially CTX-M-producing Escherichia coli MDR isolates from patients with urinary tract infections (UTIs) and bacteremia in a rural hospital in Mozambique. Materials and methods: One hundred and fifty-one E. coli isolates from bacteremia and UTI in children were screened for CTX-M, TEM, SHV and OXA β-lactamases by polymerase chain reaction and sequencing. Isolates carrying CTX-M group 1 β-lactamases were further studied. The resistance to other antibiotic families was determined by phenotypic and genotypic methods, the location of the blaCTX-M gene and the epidemiology of the isolates were studied, and extensive plasmid characterization was performed. Results: Approximately 11% (17/151) of E. coli isolates causing bacteremia and UTI were ESBL producers. CTX-M-15 was the most frequently detected ESBL, accounting for 75% of the total isolates characterized. The blaCTX-M gene is located in different plasmids belonging to different incompatibility groups and can be found in non-epidemiologically related isolates, indicating the high capacity of this resistance determinant to spread widely. Conclusion: Our data suggest the presence of a co-selection of third-generation cephalosporin-resistant determinants in the study area despite limited access to these antibiotics. This highlights the importance of continuous surveillance of antimicrobial resistance of both genetic elements of resistance and resistant isolates in order to monitor the emergence and trends of ESBL-producing isolates to promote adequate therapeutic strategies for the management of MDR bacterial infections

    MALDI-TOF/MS identification of species from the Acinetobacter baumannii (Ab) group revisited: inclusion of the novel A. seifertii and A. dijkshoorniae species

    Get PDF
    OBJECTIVES: Rapid identification of Acinetobacter species is critical since members of the A. baumannii (Ab) group differ in antibiotic susceptibility and clinical outcomes. A. baumannii, A. pittii and A. nosocomialis can be identified by MALDI-TOF/MS, while the novel species A. seifertii and A. dijkshoorniae cannot. Low identification rates for A. nosocomialis have also been reported. We evaluated the use of MALDI-TOF/MS to identify isolates of A. seifertii and A. dijkshoorniae and revisited the identification of A. nosocomialis to update the Bruker taxonomy database. METHODS: Species characterisation was performed by rpoB-clustering and MLSA. MALDI-TOF/MS spectra were recovered from formic acid/acetonitrile bacterial extracts overlaid with alpha-cyano-4-hydroxy-cinnamic acid matrix on a MicroflexLT in linear positive mode and 2,000-20,000 m/z range mass. Spectra were examined with the ClinProTools v2.2 software. Mean spectra (MSP) were created with the BioTyper software. RESULTS: Seventy-eight Acinetobacter isolates representative of the Ab group were used to calculate the average spectra/species and generate pattern recognition models. Species-specific peaks were identified for all species, and MSPs derived from 3 A. seifertii, 2 A. dijkshoorniae and 2 A. nosocomialis strains were added to the Bruker taxonomy database, allowing successful identification of all isolates using spectra from either bacterial extracts or direct colonies, resulting in a positive predictive value (PPV) of 99.6% (777/780) and 96.8% (302/312), respectively. CONCLUSIONS: The use of post-processing data software identified statistically significant species-specific peaks to generate reference signatures for rapid accurate identification of species within the Ab group, providing relevant information for the clinical management of Acinetobacter infections

    In vitro and in vivo Virulence Potential of the Emergent Species of the Acinetobacter baumannii (Ab) Group

    Get PDF
    The increased use of molecular identification methods and mass spectrometry has revealed that Acinetobacter spp. of the A. baumannii (Ab) group other than A. baumannii are increasingly being recovered from human samples and may pose a health challenge if neglected. In this study 76 isolates of 5 species within the Ab group (A. baumannii n = 16, A. lactucae n = 12, A. nosocomialis n = 16, A. pittii n = 20, and A. seifertii n = 12), were compared in terms of antimicrobial susceptibility, carriage of intrinsic resistance genes, biofilm formation, and the ability to kill Caenorhabditis elegans in an infection assay. In agreement with previous studies, antimicrobial resistance was common among A. baumannii while all other species were generally more susceptible. Carriage of genes encoding different efflux pumps was frequent in all species and the presence of intrinsic class D β-lactamases was reported in A. baumannii, A. lactucae (heterotypic synonym of A. dijkshoorniae) and A. pittii but not in A. nosocomialis and A. seifertii. A. baumannii and A. nosocomialis presented weaker pathogenicity in our in vitro and in vivo models than A. seifertii, A. pittii and, especially, A. lactucae. Isolates from the former species showed decreased biofilm formation and required a longer time to kill C. elegans nematodes. These results suggest relevant differences in terms of antibiotic susceptibility patterns among the members of the Ab group as well as highlight a higher pathogenicity potential for the emerging species of the group in this particular model. Nevertheless, the impact of such potential in the human host still remains to be determined

    Acinetobacter dijkshoorniae sp. nov., a new member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex mainly recovered from clinical samples in different countries

    Get PDF
    The recent advances in bacterial species identification methods have led to the rapid taxonomic diversification of the genus Acinetobacter. In the present study, phenotypic and molecular methods have been used to determine the taxonomic position of a group of 12 genotypically distinct strains belonging to the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex, initially described by Gerner-Smidt and Tjernberg in 1993, that are closely related to A. pittii. Strains characterized in this study originated mostly from human samples obtained in different countries over a period of 15 years. rpoB and MLST sequences were compared against those of 94 strains representing all species included in the ACB complex. Cluster analysis based on such sequences showed that all 12 strains grouped together in a distinct clade closest to A. pittii that was supported by bootstrap values of 99%. Values of average nucleotide identity based on BLAST between the genome sequence of strain JVAP01 (NCBI accession n masculine. LJPG00000000) and those of other species from the ACB were always < 91.2%, supporting the species status of the group. In addition, the metabolic characteristics of the group matched those of the ACB complex and the analysis of their protein signatures by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry identified some specific peaks. Our results support the designation of these strains as a novel species and we propose the name A. dijkshoorniae sp. nov. The type strain is JVAP01T (CECT 9134T, LMG 29605T)

    Draft Genome Sequence of JVAP01T, the Type Strain of the Novel Species Acinetobacter dijkshoorniae

    No full text
    Here, we report the draft genome sequence of the type strain of Acinetobacter dijkshoorniae, a novel human pathogen within the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Strain JVAP01T has an estimated genome size of 3.9 Mb, exhibits a 38.8% G+C content, and carries a plasmid with the blaNDM-1 carbapenemase gene

    Draft Genome Sequence of JVAP01T, the Type Strain of the Novel Species Acinetobacter dijkshoorniae

    No full text
    Here, we report the draft genome sequence of the type strain of Acinetobacter dijkshoorniae, a novel human pathogen within the Acinetobacter calcoaceticus-Acinetobacter baumannii (ACB) complex. Strain JVAP01T has an estimated genome size of 3.9 Mb, exhibits a 38.8% G+C content, and carries a plasmid with the blaNDM-1 carbapenemase gene

    In vitro and in vivo Virulence Potential of the Emergent Species of the Acinetobacter baumannii (Ab) Group

    No full text
    The increased use of molecular identification methods and mass spectrometry has revealed that Acinetobacter spp. of the A. baumannii (Ab) group other than A. baumannii are increasingly being recovered from human samples and may pose a health challenge if neglected. In this study 76 isolates of 5 species within the Ab group (A. baumannii n = 16, A. lactucae n = 12, A. nosocomialis n = 16, A. pittii n = 20, and A. seifertii n = 12), were compared in terms of antimicrobial susceptibility, carriage of intrinsic resistance genes, biofilm formation, and the ability to kill Caenorhabditis elegans in an infection assay. In agreement with previous studies, antimicrobial resistance was common among A. baumannii while all other species were generally more susceptible. Carriage of genes encoding different efflux pumps was frequent in all species and the presence of intrinsic class D β-lactamases was reported in A. baumannii, A. lactucae (heterotypic synonym of A. dijkshoorniae) and A. pittii but not in A. nosocomialis and A. seifertii. A. baumannii and A. nosocomialis presented weaker pathogenicity in our in vitro and in vivo models than A. seifertii, A. pittii and, especially, A. lactucae. Isolates from the former species showed decreased biofilm formation and required a longer time to kill C. elegans nematodes. These results suggest relevant differences in terms of antibiotic susceptibility patterns among the members of the Ab group as well as highlight a higher pathogenicity potential for the emerging species of the group in this particular model. Nevertheless, the impact of such potential in the human host still remains to be determined
    corecore