2 research outputs found

    New results from the NUMEN project

    Get PDF
    NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (18O,18Ne) and (20Ne,20O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the half-life of 0νββ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beams and the MAGNEX magnetic spectrometer at INFN Laboratori Nazionali del Sud in Catania (Italy). The measured cross sections are extremely low, limiting the present exploration to few selected isotopes of interest in the context of typically low-yield experimental runs. A major upgrade of the LNS facility is foreseen in order to increase the experimental yield of at least two orders of magnitude, thus making feasible a systematic study of all the cases of interest. peerReviewe

    The γ\gamma decay of the Hoyle and higher excitation energy states of 12^{12}C

    No full text
    International audienceThe Hoyle state and few other excited levels of 12C are fundamental for the production of carbon in the universe. In particular, the γ decay branching ratio is of utmost importance, being the only way to produce a carbon at the ground state. For the purpose to precisely investigate the decay mechanism of such states we conducted an experiment, at Laboratori Nazionali del Sud-Istituto Nazionale di Fisica Nucleare (INFN-LNS), using the reaction α + 12 C at 64 MeV. We used the 4π CHIMERA detector to detect both α and γ 12 C decay channels. Details of the experiment and preliminary results are discussed in the paper
    corecore