563 research outputs found

    Crystalline electric field effects in the electrical resistivity of PrOs4_4Sb12_{12}

    Full text link
    The temperature TT and magnetic field HH dependencies of the electrical resistivity ρ\rho of the recently discovered heavy fermion superconductor \PrOsSb{} have features that are associated with the splitting of the Pr3+^{3+} Hund's rule multiplet by the crystalline electric field (CEF). These features are apparently due to magnetic exchange and aspherical Coulomb scattering from the thermally populated CEF-split Pr3+^{3+} energy levels. The ρ(T)\rho(T) data in zero magnetic field can be described well by calculations based on CEF theory for various ratios of magnetic exchange and aspherical Coulomb scattering, and yield CEF parameters that are qualitatively consistent with those previously derived from magnetic susceptibility, specific heat, and inelastic neutron scattering measurements. Calculated ρ(H)\rho(H) isotherms for a Γ3\Gamma_{3} ground state qualitatively account for the `dome-shaped' feature in the measured ρ(H)\rho(H) isotherms.Comment: 8 pages, 2 figures, submitted to Journal of Physics: Condensed Matte

    Neutron Scattering Study of URu2x_{2-x}Rex_xSi2_2 with xx = 0.10: Driving Order towards Quantum Criticality

    Full text link
    We report inelastic neutron scattering measurements in the hidden order state of URu2x_{2-x}Rex_xSi2_2 with xx = 0.10. We observe that towards the ferromagnetic quantum critical point induced by the negative chemical pressure of Re-doping, the gapped incommensurate fluctuations are robust and comparable in intensity to the parent material. As the Re doping moves the system toward the quantum critical point, the commensurate spin fluctuations related to hidden order weaken, display a shortened lifetime and slow down. Halfway to the quantum critical point, the hidden order phase survives, albeit weakened, in contrast to its destruction by hydrostatic pressure and by positive chemical pressure from Rh-doping.Comment: 5 pages, 6 figures, 24 reference

    Evidence for a common physical description of non-Fermi-liquid behavior in f-electron systems

    Full text link
    The non-Fermi-liquid (NFL) behavior observed in the low temperature specific heat C(T)C(T) and magnetic susceptibility χ(T)\chi(T) of f-electron systems is analyzed within the context of a recently developed theory based on Griffiths singularities. Measurements of C(T)C(T) and χ(T)\chi(T) in the systems Th1xUxPd2Al3Th_{1-x}U_{x}Pd_{2}Al_{3}, Y1xUxPd3Y_{1-x}U_{x}Pd_3, and UCu5xMxUCu_{5-x}M_{x} (M = Pd, Pt) are found to be consistent with C(T)/Tχ(T)T1+λC(T)/T \propto \chi(T) \propto T^{-1+\lambda} predicted by this model with λ<1\lambda <1 in the NFL regime. These results suggest that the NFL properties observed in a wide variety of f-electron systems can be described within the context of a common physical picture.Comment: 4 pages, 4 figure

    Avoided Antiferromagnetic Order and Quantum Critical Point in CeCoIn5_5

    Get PDF
    We measured specific heat and resistivity of heavy fermion CeCoIn5 between the superconducting critical field Hc2=5TH_{c2} = 5 T and 9 T, with field in the [001] direction, and at temperatures down to 50mK. At 5T the data show Non Fermi Liquid behavior down to the lowest temperatures. At field above 8T the data exhibit crossover from the Fermi liquid to a Non Fermi Liquid behavior. We analyzed the scaling properties of the specific heat, and compared both resistivity and the specific heat with the predictions of a spin-fluctuation theory. Our analysis leads us to suggest that the NFL behavior is due to incipient antiferromagnetism (AF) in CeCoIn5, with the quantum critical point in the vicinity of the Hc2H_{c2}. Below Hc2H_{c2} the AF phase which competes with the paramagnetic ground state is superseded by the superconducting transition.Comment: 5 pages, 3 figure

    Superconductivity and crystalline electric field effects in the filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}

    Full text link
    X-ray powder diffraction, magnetic susceptibility χ(T)\chi(T), and electrical resistivity ρ(T)\rho(T) measurements were made on single crystals of the filled skutterudite series Pr(Os1x_{1-x}Rux_x)4_4Sb12_{12}. One end of the series (x=0x = 0) is a heavy fermion superconductor with a superconducting critical temperature Tc=1.85T_{c} = 1.85 K, while the other end (x=1x = 1) is a conventional superconductor with Tc1T_{c} \approx 1 K. The lattice constant aa decreases approximately linearly with increasing Ru concentration xx. As Ru (Os) is substituted for Os (Ru), TcT_{c} decreases nearly linearly with substituent concentration and exhibits a minimum with a value of Tc=0.75T_{c} = 0.75 K at x=0.6x = 0.6, suggesting that the two types of superconductivity compete with one another. Crystalline electric field (CEF) effects in χdc(T)\chi_\mathrm{dc}(T) and ρ(T)\rho(T) due to the splitting of the Pr3+^{3+} nine-fold degenerate Hund's rule J=4J = 4 multiplet are observed throughout the series, with the splitting between the ground state and the first excited state increasing monotonically as xx increases. The fits to the χdc(T)\chi_\mathrm{dc}(T) and ρ(T)\rho(T) data are consistent with a Γ3\Gamma_{3} doublet ground state for all values of x, although reasonable fits can be obtained for a Γ1\Gamma_{1} ground state for xx values near the end member compounds (x=0x = 0 or x=1x = 1).Comment: 10 pages, 8 figures, submitted to Phys. Rev.

    Spinless Two-Band Model in Infinite Dimensions

    Full text link
    A spinless two-band model is studied in infinite dimension limit. Starting from the atomic limit, the formal exact solution of the model is obtained by means a perturbative treatment of the hopping and hybridisation terms. The model is solved in closed form in high dimensions assuming no local spin fluctuations. The non-Fermi liquid properties appearing in the metallic phase are analysed through the behaviour of the density of states and the self-energy near the Fermi level.Comment: 4 pages, 3 figures, to appear in PRB-Breif Repor

    Pressure induced superconductivity in the charge density wave compound TbTe3

    Full text link
    A series of high-pressure resistivity measurements on single crystals of TbTe3 reveal a complex phase diagram involving the interplay of superconducting, antiferromagnetic and charge density wave orders. The onset of superconductivity reaches a maximum of ~ 3.5 K (onset) near 75 kbar.Comment: 4 pages, 4 figures; magnetization figure removed due to space constraints; accepted for publication in Physical Review Letter

    Competition between phonon superconductivity and Kondo screening in mixed valence and heavy fermion compounds

    Full text link
    We consider competition of Kondo effect and s-wave superconductivity in heavy fermion and mixed valence superconductors, using the phenomenological approach for the periodic Anderson model. Similar to the well known results for single-impurity Kondo effect in superconductors, we have found principal possibility of a re-entrant regime of the superconducting transition temperature, TcT_c, in heavy fermion superconductors in a narrow range of model parameters and concentration of f-electrons. Suppression of TcT_c in mixed valence superconductors is much weaker. Our theory has most validity in the low-temperature Fermi liquid regime, without re-entrant behavior of TcT_c. To check its applicability, we performed the fit for the xx-dependence of TcT_c in Ce1x_{1-x}Lax_xRu3_3Si2_2 and obtained an excellent agreement with the experimental data, although no re-entrance was found in this case. Other experimental data are discussed in the light of our theoretical analysis. In particular, we compare temperatures of the superconducting transition for some known homologs, i.e., the analog periodic lattice compounds with and without f-elements. For a few pairs of homologs superconductivity exists only in the heavy fermion materials, thus confirming uniqueness of superconductivity mechanisms for the latter. We suggest that for some other compounds the value of TcT_c may remain of the same order in the two homologs, if superconductivity originates mainly on some light Fermi surface, but induces sizable superconducting gap on another Fermi surface,for which hybridization or other heavy fermion effects are more significant.Comment: 11 pages, 4 figures, pd
    corecore