1,249 research outputs found

    Resource allocation and scheduling of multiple composite web services in cloud computing using cooperative coevolution genetic algorithm

    Get PDF
    In cloud computing, resource allocation and scheduling of multiple composite web services is an important and challenging problem. This is especially so in a hybrid cloud where there may be some low-cost resources available from private clouds and some high-cost resources from public clouds. Meeting this challenge involves two classical computational problems: one is assigning resources to each of the tasks in the composite web services; the other is scheduling the allocated resources when each resource may be used by multiple tasks at different points of time. In addition, Quality-of-Service (QoS) issues, such as execution time and running costs, must be considered in the resource allocation and scheduling problem. Here we present a Cooperative Coevolutionary Genetic Algorithm (CCGA) to solve the deadline-constrained resource allocation and scheduling problem for multiple composite web services. Experimental results show that our CCGA is both efficient and scalable

    Clustering composite SaaS components in Cloud computing using a Grouping Genetic Algorithm

    Get PDF
    Recently, Software as a Service (SaaS) in Cloud computing, has become more and more significant among software users and providers. To offer a SaaS with flexible functions at a low cost, SaaS providers have focused on the decomposition of the SaaS functionalities, or known as composite SaaS. This approach has introduced new challenges in SaaS resource management in data centres. One of the challenges is managing the resources allocated to the composite SaaS. Due to the dynamic environment of a Cloud data centre, resources that have been initially allocated to SaaS components may be overloaded or wasted. As such, reconfiguration for the components’ placement is triggered to maintain the performance of the composite SaaS. However, existing approaches often ignore the communication or dependencies between SaaS components in their implementation. In a composite SaaS, it is important to include these elements, as they will directly affect the performance of the SaaS. This paper will propose a Grouping Genetic Algorithm (GGA) for multiple composite SaaS application component clustering in Cloud computing that will address this gap. To the best of our knowledge, this is the first attempt to handle multiple composite SaaS reconfiguration placement in a dynamic Cloud environment. The experimental results demonstrate the feasibility and the scalability of the GGA

    Positive Definite Tensors to Nonlinear Complementarity Problems

    Full text link
    The main purpose of this note is to investigate some kinds of nonlinear complementarity problems (NCP). For the structured tensors, such as, symmetric positive definite tensors and copositive tensors, we derive the existence theorems on a solution of these kinds of nonlinear complementarity problems. We prove that a unique solution of the NCP exists under the condition of diagonalizable tensors.Comment: 11 page

    Nonlinear diffusion problems with free boundaries: Convergence, transition speed and zero number arguments,

    Full text link
    This paper continues the investigation of Du and Lou (J. European Math Soc, to appear), where the long-time behavior of positive solutions to a nonlinear diffusion equation of the form ut=uxx+f(u)u_t=u_{xx}+f(u) for xx over a varying interval (g(t),h(t))(g(t), h(t)) was examined. Here x=g(t)x=g(t) and x=h(t)x=h(t) are free boundaries evolving according to gβ€²(t)=βˆ’ΞΌux(t,g(t))g'(t)=-\mu u_x(t, g(t)), hβ€²(t)=βˆ’ΞΌux(t,h(t))h'(t)=-\mu u_x(t,h(t)), and u(t,g(t))=u(t,h(t))=0u(t, g(t))=u(t,h(t))=0. We answer several intriguing questions left open in the paper of Du and Lou.First we prove the conjectured convergence result in the paper of Du and Lou for the general case that ff is C1C^1 and f(0)=0f(0)=0. Second, for bistable and combustion types of ff, we determine the asymptotic propagation speed of h(t)h(t) and g(t)g(t) in the transition case. More presicely, we show that when the transition case happens, for bistable type of ff there exists a uniquely determined c1>0c_1>0 such that lim⁑tβ†’βˆžh(t)/ln⁑t=lim⁑tβ†’βˆžβˆ’g(t)/ln⁑t=c1\lim_{t\to\infty} h(t)/\ln t=\lim_{t\to\infty} -g(t)/\ln t=c_1, and for combustion type of ff, there exists a uniquely determined c2>0c_2>0 such that lim⁑tβ†’βˆžh(t)/t=lim⁑tβ†’βˆžβˆ’g(t)/t=c2\lim_{t\to\infty} h(t)/\sqrt t=\lim_{t\to\infty} -g(t)/\sqrt t=c_2. Our approach is based on the zero number arguments of Matano and Angenent, and on the construction of delicate upper and lower solutions
    • …
    corecore