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Abstract. In cloud computing, resource allocation and scheduling of
multiple composite web services is an important and challenging prob-
lem. This is especially so in a hybrid cloud where there may be some low-
cost resources available from private clouds and some high-cost resources
from public clouds. Meeting this challenge involves two classical compu-
tational problems: one is assigning resources to each of the tasks in the
composite web services; the other is scheduling the allocated resources
when each resource may be used by multiple tasks at different points
of time. In addition, Quality-of-Service (QoS) issues, such as execution
time and running costs, must be considered in the resource allocation
and scheduling problem. Here we present a Cooperative Coevolutionary
Genetic Algorithm (CCGA) to solve the deadline-constrained resource
allocation and scheduling problem for multiple composite web services.
Experimental results show that our CCGA is both efficient and scalable.
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1 Introduction

Cloud computing is a new Internet-based computing paradigm whereby a pool
of computational resources, deployed as web services, are provided on demand
over the Internet, in the same manner as public utilities. Recently, cloud com-
puting has become popular because it brings many cost and efficiency benefits
to enterprises when they build their own web service-based applications.

When an enterprise builds a new web service-based application, it can use
published web services in both private clouds and public clouds, rather than
developing them from scratch. In this paper, private clouds refer to internal data
centres owned by an enterprise, and public clouds refer to public data centres
that are accessible to the public. A composite web service built by an enterprise
is usually composed of multiple component web services, some of which may be
provided by the private cloud of the enterprise itself and others which may be
provided in a public cloud maintained by an external supplier. Such a computing
environment is called a hybrid cloud.
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The component web service allocation problem of interest here is based on
the following assumptions. Component web services provided by private and
public clouds may have the same functionality, but different Quality-of-Service
(QoS) values, such as response time and cost. In addition, in a private cloud a
component web service may have a limited number of instances, each of which
may have different QoS values. In public clouds, with greater computational
resources at their disposal, a component web service may have a large number of
instances, with identical QoS values. However, the QoS values of service instances
in different public clouds may vary. There may be many composite web services
in an enterprise. Each of the tasks comprising a composite web service needs
to be allocated an instance of a component web service. A single instance of
a component web service may be allocated to more than one task in a set of
composite web services, as long as it is used at different points of time.

In addition, we are concerned with the component web service scheduling
problem. In order to maximise the utilisation of available component web services
in private clouds, and minimise the cost of using component web services in
public clouds, allocated component web service instances should only be used
for a short period of time. This requires scheduling the allocated component web
service instances efficiently.

There are two typical QoS-based component web service allocation and sche-
duling problems in cloud computing. One is the deadline-constrained resource
allocation and scheduling problem, which involves finding a cloud service allo-
cation and scheduling plan that minimises the total cost of the composite web
service, while satisfying given response time constraints for each of the composite
web services. The other is the cost-constrained resource allocation and schedul-
ing problem, which requires finding a cloud service allocation and scheduling
plan which minimises the total response times of all the composite web services,
while satisfying a total cost constraint.

In previous work [1], we presented a random-key genetic algorithm (RGA) [2]
for the constrained resource allocation and scheduling problems and used exper-
imental results to show that our RGA was scalable and could find an acceptable,
but not necessarily optimal, solution for all the problems tested. In this paper
we aim to improve the quality of the solutions found by applying a coopera-
tive coevolutionary genetic algorithm (CCGA) [3–5] to the deadline-constrained
resource allocation and scheduling problem.

2 Problem Definition

Based on the requirements introduced in the previous section, the deadline-
constrained resource allocation and scheduling problem can be formulated as
follows.

Inputs

1. A set of composite web services W = {W1, W2, . . . ,Wn}, where n is the
number of composite web services. Each composite web service consists of
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several abstract web services. We define Oi = {oi,1, oi,2, . . . , oi,ni} as the
abstract web services set for composite web service Wi, where ni is the
number of abstract web services contained in composite web service Wi.

2. A set of candidate cloud services Si,j for each abstract web service oi,j ,
where Si,j = Su

i,j ∪Sv
i,j , and Sv

i,j = {Sv
i,j,1, S

v
i,j,2, . . . , S

v
i,j,`} denotes an entire

set of ` private cloud service candidates for abstract web service oi,j , and
Su

i,j = {Su
i,j,1, S

u
i,j,2, . . . , S

u
i,j,m} denotes an entire set of m public cloud service

candidates for abstract web service oi,j .
3. A response time and price for each public cloud service Su

i,j,k, denoted by
tui,j,k and cu

i,j,k respectively, and a response time and price for each private
cloud service Sv

i,j,k, denoted by tvi,j,k and cv
i,j,k respectively.

Output

1. An allocation and scheduling plan X = {Xi | i = 1, 2, . . . , n}, such that the
total cost of X, i.e., Cost(X) =

∑n
i=1

∑ni

j=1 Cost(Mi,j), is minimal, where
Xi = {(Mi,1, Fi,1), (Mi,2, Fi,2), . . . , (Mi,ni

, Fi,ni
)} denotes an allocation and

scheduling plan for composite web service Wi, Mi,j represents the selected
cloud service for abstract web service oi,j , and Fi,j stands for the finishing
time of Mi,j .

Constraints

1. All the finishing-time precedence requirements between the abstract web
services are satisfied, that is, Fi,k ≤ Fi,j − di,j , where j = 1, . . . , ni, and
k ∈ Prei,j , where Prei,j denotes the set of all abstract web services that
must execute before the abstract web service oi,j .

2. All the resource limitations are respected, that is,
∑

j∈A(t) rj,m ≤ 1, where
m ∈ Sv

i,j and A(t) denotes the entire set of abstract web services being used
at time t. Let rj,m = 1 if abstract web service j requires private cloud service
m in order to execute and rj,m = 0 otherwise. This constraint guarantees
that each private cloud service can only serve at most one abstract web
service at a time.

3. The deadline constraint for each composite web service is satisfied, that is,
Fi,ni

≤ di, such that i = 1, . . . , n, where di denotes the deadline promised to
the customer for composite web service Wi, and Fi,ni is the finishing time
of the last abstract service of composite web service Wi, that is, the overall
execution time of the composite web service Wi.

3 A Cooperative Coevolutionary Genetic Algorithm

Our Cooperative Coevolutionary Genetic Algorithm is based on Potter and
De Jong’s model [3]. In their approach several species, or subpopulations, co-
evolve together. Each individual in a subpopulation constitutes a partial solution
to the problem, and the combination of an individual from all the subpopula-
tions forms a complete solution to the problem. The subpopulations of the CCGA
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evolve independently in order to improve the individuals. Periodically, they in-
teract with each other to acquire feedback on how well they are cooperatively
solving the problem. In order to use the cooperative coevolutionary model, two
major issues must be addressed, problem decomposition and interaction between
subpopulations, which are discussed in detail below.

3.1 Problem Decomposition

Problem composition can be either static, where the entire problem is parti-
tioned in advance and the number of subpopulations is fixed, or dynamic, where
the number of subpopulations is adjusted during the calculation time. Since
the problem studied here can be naturally decomposed into a fixed number of
subproblems beforehand, the problem decomposition adopted by our CCGA is
static.

Essentially our problem is to find a resource allocation scheduling solution
for multiple composite web services. Thus, we define the problem of finding a
resource allocation and scheduling solution for each of the composite web services
as a subproblem. Therefore, the CCGA has n subpopulations, where n is the total
number of composite web services involved. Each subpopulation is responsible
for solving one subproblem and the n subpopulations interact with each other
as the n composite web services compete for resources.

3.2 Interaction Between Subpopulations

In our Cooperative Coevolutionary Genetic Algorithm, interactions between sub-
populations occur when evaluating the fitness of an individual in a subpopula-
tion. The fitness value of a particular individual in a population is an estimate of
how well it cooperates with other species to produce good solutions. Guided by
the fitness value, subpopulations work cooperatively to solve the problem. This
interaction between the sub-populations involves the following two issues.

1. Collaborator selection, i.e., selecting collaborator subcomponents from each
of the other subpopulations, and assembling the subcomponents with the
current individual being evaluated to form a complete solution. There are
many ways of selecting collaborators [6]. In our CCGA, we use the most
popular one, choosing the best individuals from the other subpopulations,
and combine them with the current individual to form a complete solution.
This is the so-called greedy collaborator selection method [6].

2. Credit assignment, i.e., assigning credit to the individual. This is based on
the principle that the higher the fitness value the complete solution has—
constructed by the above collaborator selection method—the more credit the
individual will obtain. The fitness function is defined by Equations 1 to 3
below. By doing so, in the following evolving rounds, an individual resulting
in better cooperation with its collaborators will be more likely to survive.
In other words, this credit assignment method can enforce the evolution of
each population towards a better direction for solving the problem.
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Fitness(X) =
{

FCost
Max /Fobj(X), if V (X) ≤ 1;

1/V (X), otherwise. (1)

V (X) =
n∏

i=1

(Vi(X)) (2)

Vi(X) =
{

Fi,ni/di, if Fi,ni > di;
1, otherwise. (3)

In Equation 1, condition V (X) ≤ 1 means there is no constraint violation.
Conversely, V (X) > 1 means some constraints are violated, and the larger
the value of V (X), the higher the degree of constraint violation. FCost

Max is the
worst Fobj(X), namely the maximal total cost, among all feasible individuals
in a current generation. Ratio FCost

Max /Fobj(X) is used to scale the fitness
value of all feasible solutions into range [1,∞). Using Equations 1 to 3, we
can guarantee that the fitness of all feasible solutions in a generation are
better than the fitness of all infeasible solutions. In addition, the lower the
total cost for a feasible solution, the better fitness the solution will have. The
higher number of constraints that are violated by an infeasible solution, the
worse fitness the solution will have.

3.3 Algorithm Description

Algorithm 1 summarises our Cooperative Coevolutionary Genetic Algorithm.
Step 1 initialises all the subpopulations. Steps 2 to 7 evaluate the fitness of each
individual in the initial subpopulations. This is done in two steps. The first step
combines the individual indiv[i][j] (indiv[i][j] denotes the j th individual in the
ith subpopulation in the CCGA) with the jth individual from each of the other
subpopulations to form a complete solution c to the problem, and the second
step calculates the fitness value of the solution c using the fitness function defined
by Equation 1.

Steps 8 to 18 are the co-evolution rounds for the N subpopulations. In each
round, the N subpopulations evolve one by one from the 1st to the Nth. When
evolving a subpopulation SubPop[i], where 1 ≤ i ≤ N , we use the same selection,
crossover and mutation operators as used in our previously-described random-
key genetic algorithm (RGA) [1]. However, the fitness evaluation used in the
CCGA is different from that used in the RGA. In the CCGA, we use the afore-
mentioned collaborator selection strategy and the credit assignment method to
evaluate the fitness of an individual. The cooperative co-evolution process is re-
peated until certain termination criteria are satisfied, specific to the application
(e.g., a certain number of rounds or a fixed time limit).

4 Experimental Results

Experiments were conducted to evaluate the scalability and effectiveness of our
CCGA for the resource allocation and scheduling problem by comparing it with
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Algorithm 1: Our cooperative coevolutionary genetic algorithm

1 Construct N sets of initial populations, SubPop[i], i = 1, 2, . . . , N
2 for i← 1 to N do
3 foreach individual indiv[i][j] of the subpopulation SubPop[i] do
4 c← SelectPartnersBySamePosition(j)
5 indiv[i][j].F itness← FitnessFunc (c)

6 end

7 end
8 while termination condition is not true do
9 for i← 1 to N do

10 Select fit individuals in SubPop[i] for reproduction
11 Apply the crossover operator to generate new offspring for SubPop[i]
12 apply the mutation operator to offspring
13 foreach individual indiv[i][j] of the subpopulation SubPop[i] do
14 c← SelectPartnersByBestFitness

15 indiv[i][j].F itness← FitnessFunc (c)

16 end

17 end

18 end

our previous RGA [1]. Both algorithms were implemented in Microsoft Visual
C], and the experiments were conducted on a desktop computer with a 2.33 GHz
Intel Core 2 Duo CPU and a 1.95 GB RAM. The population sizes of the RGA
and the CCGA were 200 and 100, respectively. The probabilities for crossover
and mutation in both the RGA and the CCGA were 0.85 and 0.15, respectively.
The termination condition used in the RGA was “no improvement in 40 consec-
utive generations”, while the termination condition used in the CCGA was “no
improvement in 20 consecutive generations”. These parameters were obtained
through trials on randomly generated test problems. The parameters that led to
the best performance in the trials were selected.

The scalability and effectiveness of the CCGA and RGA were tested on a
number of problem instances with different sizes. Problem size is determined by
three factors: the number of composite web services involved in the problem, the
number of abstract web services in each composite web service, and the number
of candidate cloud services for each abstract service. We constructed three types
of problems, each designed to evaluate how one of the three factors affects the
computation time and solution quality of the algorithms.

4.1 Experiments on the Number of Composite Web Services

This experiment evaluated how the number of composite web services affects the
computation time and solution quality of the algorithms. In this experiment, we
also compared the algorithms’ convergence speeds. Considering the stochastic
nature of the two algorithms, we ran both ten times on each of the randomly
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generated test problems with a different number of composite web services. In
this experiment, the number of composite web services in the test problems
ranged from 5 to 25 with an increment of 5. The deadline constraints for the five
test problems were 59.4, 58.5, 58.8, 59.2 and 59.8 minutes, respectively. Because
of space limitations, the five test problems are not given in this paper, but they
can be found elsewhere [1].

The experimental results are presented in Table 1. It can be seen that both
algorithms always found a feasible solution to each of the test problems, but that
the solutions found by the CCGA are consistently better than those found by
the RGA. For example, for the test problem with five composite web services,
the average cost of the solutions found by the RGA of ten times run was $103,
while the average cost of the solutions found by the CCGA was only $79. Thus,
$24 can be saved by using the CCGA on average.

Table 1. Comparison of the algorithms with different numbers of composite web ser-
vices

No. of Composite RGA CCGA
Web Services Feasible Solution Aver. Cost ($) Feasible Solution Ave. Cost ($)

5 Yes 103 Yes 79
10 Yes 171 Yes 129
15 Yes 326 Yes 251
20 Yes 486 Yes 311
25 Yes 557 Yes 400

The computation time of the two algorithms as the number of composite
web services increases is shown in Figure 1. The computation time of the RGA
increased close to linearly from 25.4 to 226.9 seconds, while the computation
time of the CCGA increased super-linearly from 6.8 to 261.5 seconds as the
number of composite web services increased from 5 to 25. Although the CCGA
is not as scalable as the RGA there is little overall difference between the two
algorithms for problems of this size, and a single web service would not normally
comprise very large numbers of components.

4.2 Experiments on the Number of Abstract Web Services

This experiment evaluated how the number of abstract web services in each
composite web service affects the computation time and solution quality of the
algorithms. In this experiment, we randomly generated five test problems. The
number of abstract web services in the five test problems ranged from 5 to 25 with
an increment of 5. The deadline constraints for the test problems were 26.8, 59.1,
89.8, 117.6 and 153.1 minutes, respectively. The quality of the solutions found
by the two algorithms for each of the test problems is shown in Table 2. Once
again both algorithms always found feasible solutions, and the CCGA always
found better solutions than the RGA.
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Fig. 1. Number of composite web services versus computation time for both algorithms

Table 2. Comparison of the algorithms with different numbers of abstract web services

No. of RGA CCGA
Abstract Services Feasible Solution Ave. Cost ($) Feasible Solution Ave. Cost ($)

5 Yes 105 Yes 81
10 Yes 220 Yes 145
15 Yes 336 Yes 259
20 Yes 458 Yes 322
25 Yes 604 Yes 463

The computation times of the two algorithms as the number of abstract web
services involved in each composite web service increases are displayed in Fig-
ure 2. The Random-key GA’s computation time increased linearly from 29.8 to
152.3 seconds and the Cooperative Coevolutionary GA’s computation time in-
creased linearly from 14.8 to 72.1 seconds as the number of abstract web services
involved in the each composite web service grew from 5 to 25. On this occasion
the CCGA clearly outperformed the RGA.

4.3 Experiments on the Number of Candidate Cloud Services

This experiment examined how the number of candidate cloud services for each
of the abstract web services affects the computation time and solution quality of
the algorithms. In this experiment, we randomly generated five test problems.
The number of candidate cloud services in the five test problems ranged from 5
to 25 with an increment of 5, and the deadline constraints for the test problems
were 26.8, 26.8, 26.8, 26.8 and 26.8 minutes, respectively. Table 3 shows that yet
again both algorithms always found feasible solutions, with those produced by
the CCGA being better than those produced by the RGA.
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Fig. 2. Number of abstract web services versus computation time for both algorithms

Table 3. Comparison of the algorithms with different numbers of candidate cloud
services for each abstract service

No. of Candidate RGA CCGA
Web Services Feasible Solution Ave. Cost ($) Feasible Solution Ave. Cost ($)

5 Yes 144 Yes 130
10 Yes 142 Yes 131
15 Yes 140 Yes 130
20 Yes 141 Yes 130
25 Yes 142 Yes 130

Figure 3 shows the relationship between the number of candidate cloud ser-
vices for each abstract web service and the algorithms’ computation times. In-
creasing the number of candidate cloud services had no significant effect on either
algorithm, and the computation time of the CCGA was again much better than
that of the RGA.

5 Conclusion and Future Work

We have presented a Cooperative Coevolutionary Genetic Algorithm which solves
the deadline-constrained cloud service allocation and scheduling problem for
multiple composite web services on hybrid clouds. To evaluate the efficiency
and scalability of the algorithm, we implemented it and compared it with our
previously-published Random-key Genetic Algorithm for the same problem. Ex-
perimental results showed that the CCGA always found better solutions than
the RGA, and that the CCGA scaled up well when the problem size increased.

The performance of the new algorithm depends on the collaborator selection
strategy and the credit assignment method used. Therefore, in future work we
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Fig. 3. Number of candidate cloud services versus computation time for both algo-
rithms

will look at alternative collaborator selection and credit assignment methods to
further improve the performance of the algorithm.
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