6 research outputs found

    Novel Dual-Component Microencapsulated Hydrophobic Amine and Microencapsulated Isocyanate Used for Self-Healing Anti-Corrosion Coating

    No full text
    Dual component microencapsulated hydrophobic amine and microencapsulated isocyanate were designed and fabricated for self-healing anti-corrosion coating. In this system, novel hydrophobic polyaspartic acid ester (PAE) and isophorone diisocyanate (IPDI) were microencapsulated respectively with melamine-formaldehyde (MF) as shell via in situ polymerization. To reduce the reaction activity between shell-forming MF prepolymer and PAE, another self-healing agent tung oil (TO) was dissolved in PAE and subsequently employed as core material. With field-emission scanning electron microscopy (FE-SEM) and optical microscopy (OM), the resultant microencapsulated IPDI with diameter of 2–5 μm showed a spherical shape and smooth surface. More importantly, both the morphology and microstructure of microencapsulated PAE enhanced significantly after addition of TO. Fourier transform infrared spectra (FTIR) analysis confirmed the molecular structure of chemical structure of the microcapsules. Thermal gravimetric analysis (TGA) indicated that both kinds of microcapsules exhibit excellent thermal resistance with the protection of MF shell. Furthermore, the self-healing epoxy coating system containing microencapsulated IPDI and microencapsulated PAE/TO was prepared and investigated. From the micrographs of true color confocal microscope (TCCM), the self-healing coating containing dual-component microcapsules showed excellent self-repairing performance compared to single microencapsulated IPDI system, and the optimal content of dual-component microcapsules in epoxy coating was 20 wt % approximately

    Fabrication and Performance of Composite Microencapsulated Phase Change Materials with Palmitic Acid Ethyl Ester as Core

    No full text
    Microencapsulation of phase change materials (PCMs) could prevent the leakage of PCMs during solid–liquid phase change process. However, their applications are mainly limited by the compactness and thermal stability of the traditional polyurea shell microcapsules. To increase the thermal compactness and thermal stability of PCM microcapsules, tetraethylorthosilicate (TEOS) was employed to form polymer/SiO2 composite shells to enhance the mechanical performance of polyurea and polyurethane microcapsule via interfacial polymerization and in situ polymerization. The morphology and chemical components of the microcapsules were characterized by field-emission scanning electron microscope (FE-SEM) and Fourier transform infrared (FT-IR) spectroscopy, respectively. The thermal properties of the microcapsules were investigated by differential scanning calorimetry (DSC) and thermal gravity analysis (TGA). The results showed the smoothness and compactness of both polyurea–SiO2 and polyurethane–SiO2 microcapsules enhanced slightly, when compared with that without TEOS addition. Moreover, the SiO2 composite shell had good effect on thermal compactness, as the weight loss rate of polyurea–SiO2 microcapsules and polyurethane–SiO2 microcapsules decreased 3.5% and 4.1%, respectively

    Hdac4 Mutations Cause Diabetes And Induce Β‐Cell Foxo1 Nuclear Exclusion

    Get PDF
    Background Studying patients with rare Mendelian diabetes has uncovered molecular mechanisms regulating β‐cell pathophysiology. Previous studies have shown that Class IIa histone deacetylases (HDAC4, 5, 7, and 9) modulate mammalian pancreatic endocrine cell function and glucose homeostasis. Methods We performed exome sequencing in one adolescent nonautoimmune diabetic patient and detected one de novo predicted disease‐causing HDAC4 variant (p.His227Arg). We screened our pediatric diabetes cohort with unknown etiology using Sanger sequencing. In mouse pancreatic β‐cell lines (Min6 and SJ cells), we performed insulin secretion assay and quantitative RT‐PCR to measure the β‐cell function transfected with the detected HDAC4 variants and wild type. We carried out immunostaining and Western blot to investigate if the detected HDAC4 variants affect the cellular translocation and acetylation status of Forkhead box protein O1 (FoxO1) in the pancreatic β‐cells. Results We discovered three HDAC4 mutations (p.His227Arg, p.Asp234Asn, and p.Glu374Lys) in unrelated individuals who had nonautoimmune diabetes with various degrees of β‐cell loss. In mouse pancreatic β‐cell lines, we found that these three HDAC4 mutations decrease insulin secretion, down‐regulate β‐cell‐specific transcriptional factors, and cause nuclear exclusion of acetylated FoxO1. Conclusion Mutations in HDAC4 disrupt the deacetylation of FoxO1, subsequently decrease the β‐cell function including insulin secretion, resulting in diabetes.PubMedWoSScopu

    The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals.

    No full text
    Plant transcription factors (TFs), such as basic helix-loop-helix (bHLH) and AT-rich zinc-binding proteins (PLATZ), play critical roles in regulating the expression of developmental genes in cereals. We identified the bHLH protein TaPGS1 (T. aestivum Positive Regulator of Grain Size 1) specifically expressed in the seeds at 5-20 days post-anthesis in wheat. TaPGS1 was ectopically overexpressed (OE) in wheat and rice, leading to increased grain weight (up to 13.81% in wheat and 18.55% in rice lines) and grain size. Carbohydrate and total protein levels also increased. Scanning electron microscopy results indicated that the starch granules in the endosperm of TaPGS1 OE wheat and rice lines were smaller and tightly embedded in a proteinaceous matrix. Furthermore, TaPGS1 was bound directly to the E-box motif at the promoter of the PLATZ TF genes TaFl3 and OsFl3 and positively regulated their expression in wheat and rice. In rice, the OsFl3 CRISPR/Cas9 knockout lines showed reduced average thousand-grain weight, grain width, and grain length in rice. Our results reveal that TaPGS1 functions as a valuable trait-associated gene for improving cereal grain yield
    corecore