15,705 research outputs found

    Enhanced quantum teleportation in the background of Schwarzschild spacetime by weak measurements

    Full text link
    It is commonly believed that the fidelity of quantum teleportation in the gravitational field would be degraded due to the heat up by the Hawking radiation. In this paper, we point out that the Hawking effect could be eliminated by the combined action of pre- and post-weak measurements, and thus the teleportation fidelity is almost completely protected. It is intriguing to notice that the enhancement of fidelity could not be attributed to the improvement of entanglement, but rather to the probabilistic nature of weak measurements. Our work extends the ability of weak measurements as a quantum technique to battle against gravitational decoherence in relativistic quantum information.Comment: 9 pages, 5 figures, comments are welcom

    Specific Involvement of G Proteins in Regulation of Serum Response Factor-mediated Gene Transcription by Different Receptors

    Get PDF
    Regulation of serum response factor (SRF)-mediated gene transcription by G protein subunits and G protein-coupled receptors was investigated in transfected NIH3T3 cells and in a cell line that was derived from mice lacking G_(αq) and G_(α11). We found that the constitutively active forms of the α subunits of the G_q and G_(12) class of G proteins, including Gα_q, Gα_(11), Gα_(14), Gα_(16), Gα_(12), and Gα_(13), can activate SRF in NIH3T3 cells. We also found that the type 1 muscarinic receptor (m1R) and α_1-adrenergic receptor (AR)-mediated SRF activation is exclusively dependent on Gα_(q/11), while the receptors for thrombin, lysophosphatidic acid (LPA), thromboxane A2, and endothelin can activate SRF in the absence of Gα_(q/11). Moreover, RGS12 but not RGS2, RGS4, or Axin was able to inhibit Gα_(12) and Gα_(13)-mediated SRF activation. And RGS12, but not other RGS proteins, blocked thrombin- and LPA-mediated SRF activation in the Gα_(q/11)-deficient cells. Therefore, the thrombin, LPA, thromboxane A2, and endothelin receptors may be able to couple to Gα_(12/13). On the contrary, receptors including β_2- and α_2-ARs, m2R, the dopamine receptors type 1 and 2, angiotensin receptors types 1 and 2, and interleukin-8 receptor could not activate SRF in the presence or absence of Gα_(q/11), suggesting that these receptors cannot couple to endogenous G proteins of the G_(12) or G_q classes

    Robust Spin Squeezing Preservation in Photonic Crystal Cavities

    Full text link
    We show that the robust spin squeezing preservation can be achieved by utilizing detuning modification for an ensemble of N separate two-level atoms embedded in photonic crystal cavities (PCC). In particular, we explore the different dynamical behaviors of spin squeezing between isotropic and anisotropic PCC cases when the atomic frequency is inside the band gap. In both cases, it is shown that the robust preservation of spin squeezing is completely determined by the formation of bound states. Intriguingly, we find that unlike the isotropic case where steady-state spin squeezing varies smoothly when the atomic frequency moves from the inside to the outside band edge, a sudden transition occurs for the anisotropic case. The present results may be of direct importance for, e.g., quantum metrology in open quantum systems.Comment: 6 pages, 4 figures, accepted by Laser Physics Letter

    Enhancing teleportation of quantum Fisher information by partial measurements

    Full text link
    The purport of quantum teleportation is to completely transfer information from one party to another distant partner. However, from the perspective of parameter estimation, it is the information carried by a particular parameter, not the information of total quantum state that needs to be teleported. Due to the inevitable noise in environment, we propose two schemes to enhance quantum Fisher information (QFI) teleportation under amplitude damping noise with the technique of partial measurements. We find that post partial measurement can greatly enhance the teleported QFI, while the combination of prior partial measurement and post partial measurement reversal could completely eliminate the effect of decoherence. We show that, somewhat consequentially, enhancing QFI teleportation is more economic than that of improving fidelity teleportation. Our work extends the ability of partial measurements as a quantum technique to battle decoherence in quantum information processing.Comment: Revised version, minor changes, accepted by Phys. Rev.

    Before the Morning After

    Get PDF
    This paper presents a wearable biopatch prototype for body surface potential measurement. It combines three key technologies, including mixed-signal system on chip (SoC) technology, inkjet printing technology, and anisotropic conductive adhesive (ACA) bonding technology. An integral part of the biopatch is a low-power low-noise SoC. The SoC contains a tunable analog front end, a successive approximation register analog-to-digital converter, and a reconfigurable digital controller. The electrodes, interconnections, and interposer are implemented by inkjet-printing the silver ink precisely on a flexible substrate. The reliability of printed traces is evaluated by static bending tests. ACA is used to attach the SoC to the printed structures and form the flexible hybrid system. The biopatch prototype is light and thin with a physical size of 16 cm x 16 cm. Measurement results show that low-noise concurrent electrocardiogram signals from eight chest points have been successfully recorded using the implemented biopatch.QC 20130805. Updated from accepted to published.</p

    Protecting entanglement from correlated amplitude damping channel using weak measurement and quantum measurement reversal

    Full text link
    Based on the quantum technique of weak measurement, we propose a scheme to protect the entanglement from correlated amplitude damping decoherence. In contrast to the results of memoryless amplitude damping channel, we show that the memory effects play a significant role in the suppression of entanglement sudden death and protection of entanglement under severe decoherence. Moreover, we find that the initial entanglement could be drastically amplified by the combination of weak measurement and quantum measurement reversal even under the correlated amplitude damping channel. The underlying mechanism can be attributed to the probabilistic nature of weak measurements.Comment: 11 pages, 5 figures, accepted by Quantum Information Processin
    • …
    corecore