18 research outputs found

    Interaction mechanism between surface layer protein and yeast mannan: Insights from multi-spectroscopic and molecular dynamics simulation analyses

    No full text
    Tibet kefir grain (TKG) formation is mainly dependent on the aggregation of lactobacillus and yeasts. The interaction of surface layer protein (SLP) and yeast mannan plays an important role in mediating the co-aggregation of Lactobacillus kefiri with Saccharomyces cerevisiae. The interaction mechanism of the two was researched through multispectral spectroscopy, morphology observation and silico approaches. Fluorescence spectra data revealed that mannan was bound to SLP through a spontaneous binding process. The particle size of the binding complex increased as the mannan concentration increased. Synchronous fluorescence spectroscopy and circular dichroism (CD) spectra showed the conformational and microenvironment alteration of SLP treated with mannan. Molecular docking results indicated that hydrophobic interactions played major roles in the formation of SLP-mannan complexes. These findings provide a deeper insight into the interactions of protein and polysaccharide, and this knowledge is valuable in the application of SLP and mannan in co-fermentation systems

    Characteristics of surface layer protein from Lactobacillus kefiri HBA20 and the role in mediating interactions with Saccharomyces cerevisiae Y8

    No full text
    In this study, the surface layer protein (SLP) from Lactobacillus kefiri HBA20 was characterized. The SLP was extracted by 5M LiCl. The molecular mass of the SLP was approximately 64 kDa as analyzed via SDS-PAGE. The surface morphology and the adhesion potential of L. kefiri HBA20 in the absence and presence of SLP were measured by AFM. Moreover, the protein secondary structure was evaluated by using circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR), respectively. SLP had high β-sheet contents and low content of α-helix. Thermal analysis of SLP of Lactobacillus kefiri HBA20 exhibited one transition peak at 129.64 °C. Furthermore, SEM measurements were showed that after the SLP were removed from the cell surface, the coaggregation ability with Saccharomyces cerevisiae Y8 of the strain was significantly reduced. In conclusion, the SLP of Lactobacillus kefiri HBA20 has a stable structure and the ability of adhesion to yeast. Molecular docking study revealed that mannan bind with the hydrophobic residues of SLP. Our results will help further understanding of the new surface layer protein and the interaction between L. kefiri and S. cerevisiae

    Bifidobacterium animalis subsp. lactis BB-12 has effect against obesity by regulating gut microbiota in two phases in human microbiota-associated rats

    No full text
    Bifidobacterium animalis subsp. lactis BB-12 (BB-12) is an extensively studied probiotics species, which has been reported to improve the human gut microbiota. This study aimed to confirm the effects of BB-12 on high-fat diet (HFD)-induced gut microbiota disorders. The probiotic BB-12 was consumed by human microbiota-associated rats and changes in gut microbiota were compared using next generation sequencing of the fecal samples collected from the normal chow group, the HFD group, and the BB-12-supplemented group. The enterotypes switched from Prevotella dominant to Akkermansia dominant as a result of switching diet from normal chow to HFD. BB-12 conferred protection on the gut microbiota composition of the rats by increasing the abundance of Prevotella and decreasing the abundance of Clostridium, Blautia, and Bacteroides in 0–3 weeks. In addition, Prevotella-dominant enterotype was maintained, which provides improve obesity effects. A decrease in body weight and the Firmicutes/Bacteroidetes ratio were also observed at week 3. While in 4–8 weeks, the enrichment of short-chain fatty acids-producing bacteria such as Eubacterium and Parabacteroides and probiotics such as Bifidobacterium was observed. The results revealed that BB-12 against obesity by regulating gut microbiota in two phases. After a short-term intervention, BB-12 supplementation suppressed the transition from the healthy to obesity state by protecting Prevotella-dominant enterotype, whereas after a long-term intervention, BB-12 ameliorates obesity by enriching beneficial bacteria in the gut

    Application of stable isotopic and mineral elemental fingerprints in identifying the geographical origin of concentrated apple juice in China

    No full text
    Food traceability is an important component of food safety and quality. Currently, there is no authentic established technique to identify the origin of concentrated apple juice (CAJ) in China. In this study, the isotopes of δ13C, δ18O and the contents of 32 elements in CAJ from five production areas (BHB, NWR, SCH, LP and YRAR) were determined. The δ13C, δ18O and 28 elements were significantly different (P < 0.05: post-hoc Duncan’s test) in the five production areas. PCA, PLS-DA and OPLS-DA were employed for regional classification of samples. The results show that ten key variables (Tl, Se, δ18O, B, Mg, Sr, Nd, Mo, As, and Na) are more relevant for discrimination of the samples. These findings contribute to understanding the variations of stable isotopic and element compositions in Chinese CAJ depending on geographic origins and offer valuable insight into the control of fraudulent labeling regarding the geographic origins of CAJ

    Pear pomace soluble dietary fiber ameliorates the negative effects of high-fat diet in mice by regulating the gut microbiota and associated metabolites

    No full text
    The gut microbiota and related metabolites are positively regulated by soluble dietary fiber (SDF). In this study, we explored the effects of SDF from pear pomace (PP) on the regulation of gut microbiota and metabolism in high-fat-diet-fed (HFD-fed) C57BL/6J male mice. The results showed that PP-SDF was able to maintain the HFD disrupted gut microbiota diversity with a significant increase in Lachnospiraceae_UCG-006, Akkermansia, and Bifidobacterium spp. The negative effects of high-fat diet were ameliorated by PP-SDF by regulating lipid metabolisms with a significant increase in metabolites like isobutyryl carnitine and dioscoretine. Correlation analysis revealed that gut microbiota, such as Akkermansia and Lachnospiraceae_UCG-006 in the PP-SDF intervention groups had strong positive correlations with isobutyryl carnitine and dioscoretin. These findings demonstrated that PP-SDF interfered with the host's gut microbiota and related metabolites to reduce the negative effects caused by a high-fat diet

    Novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle using enzymatic and microbial methods: Preparation, purification, identification and characterization

    No full text
    The aim of this study was to isolate, purify, identify, and characterize novel antioxidant peptides from protein hydrolysates of scallop (Argopecten irradians) mantle. Antioxidant peptides were obtained following protein hydrolysis, using a neutral protease, and microbial fermentation which was carried out by Bacillus licheniformis CICC 20033 under optimized conditions. Antioxidant peptides from the scallop mantle hydrolysates were then purified through fractionation using ultrafiltration membranes, and the fraction (<3 kDa) showed the highest oxygen radical absorbance capacity (ORAC) with the value of 0.362 μM trolox equivalent (TE)/mg. Subsequently, this fraction furtherly purified by Sephadex G-15 chromatography and reversed-phase high performance liquid chromatography (RP-HPLC) showed that the ORAC value was 2.96 ± 0.10 μM TE/mg. The ORAC value of fermented hydrolysates increased from 0.359 μM TE/mg to 0.425 μM TE/mg through 3 kDa ultrafiltration membrane. Five peptides from hydrolysates by enzyme treatment and twelve peptides from fermented scallop mantle hydrolysates were identified using LC-MS/MS. All selected sequences except Lys-Asp-Ala-Ala-Lys-Thr-Lys showed clear differences in scavenging activity for various radicals, which were dependent on the content and position of charged polar amino acids, aromatic amino acids and sulfur-containing amino acid in sequences

    Synbiotic Combination between <i>Lactobacillus paracasei</i> VL8 and Mannan-Oligosaccharide Repairs the Intestinal Barrier in the Dextran Sulfate Sodium-Induced Colitis Model by Regulating the Intestinal Stem Cell Niche

    No full text
    Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN’s ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/β-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells

    Synbiotic Combination between <i>Lactobacillus paracasei</i> VL8 and Mannan-Oligosaccharide Repairs the Intestinal Barrier in the Dextran Sulfate Sodium-Induced Colitis Model by Regulating the Intestinal Stem Cell Niche

    No full text
    Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN’s ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/β-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells

    Synbiotic Combination between <i>Lactobacillus paracasei</i> VL8 and Mannan-Oligosaccharide Repairs the Intestinal Barrier in the Dextran Sulfate Sodium-Induced Colitis Model by Regulating the Intestinal Stem Cell Niche

    No full text
    Previously, Lactobacillus paracasei VL8, a lactobacillus strain isolated from the traditional Finnish fermented dairy product Viili, demonstrated immunomodulatory and antibacterial effects. The prebiotic mannan-oligosaccharide (MOS) further promoted its antibacterial activity and growth performance, holding promise for maintaining intestinal health. However, this has not been verified in vivo. In this study, we elucidated the process by which L. paracasei VL8 and its synbiotc combination (SYN) with MOS repair the intestinal barrier function in dextran sodium sulfate (DSS)-induced colitis mice. SYN surpasses VL8 or MOS alone in restoring goblet cells and improving the tight junction structure. Omics analysis on gut microbiota reveals SYN’s ability to restore Lactobacillus spp. abundance and promote tryptophan metabolism. SYN intervention also inhibits the DSS-induced hyperactivation of the Wnt/β-catenin pathway. Tryptophan metabolites from Lactobacillus induce intestinal organoid differentiation. Co-housing experiments confirm microbiota transferability, replicating intestinal barrier repair. In conclusion, our study highlights the potential therapeutic efficacy of the synbiotic combination of Lactobacillus paracasei VL8 and MOS in restoring the damaged intestinal barrier and offers new insights into the complex crosstalk between the gut microbiota and intestinal stem cells

    Poly(thymine)-Templated Copper Nanoparticles as a Fluorescent Indicator for Hydrogen Peroxide and Oxidase-Based Biosensing

    No full text
    Biomineralized fluorescent metal nanoparticles have attracted considerable interest in many fields by virtue of their excellent properties in synthesis and application. Poly­(thymine)-templated fluorescent copper nanoparticles (T-CuNPs) as a promising nanomaterial has been exploited by us recently and displays great potential for signal transducing in biochemical analysis. However, the application of T-CuNPs is rare and still at an early stage. Here, a new fluorescent analytical strategy has been developed for H<sub>2</sub>O<sub>2</sub> and oxidase-based biosensing by exploiting T-CuNPs as an effective signal indicator. The mechanism is mainly based on the poly­(thymine) length-dependent formation of T-CuNPs and the probe’s oxidative cleavage. In this assay, the probe T40 can effectively template the formation of T-CuNPs by a fast <i>in situ</i> manner in the absence of H<sub>2</sub>O<sub>2</sub>, with high fluorescent signal, while the probe is cleaved into short-oligonucleotide fragments by hydroxyl radical (·OH) which is formed from the Fenton reaction in the presence of H<sub>2</sub>O<sub>2</sub>, leading to the decline of fluorescence intensity. By taking advantage of H<sub>2</sub>O<sub>2</sub> as a mediator, this strategy is further exploited for oxidase-based biosensing. As the proof-of-concept, glucose in human serum has been chosen as the model system and has been detected, and its practical applicability has been investigated by assay of real clinical blood samples. Results demonstrate that the proposed strategy has not only good detection capability but also eminent detection performance, such as simplicity and low-cost, holding great potential for constructing effective sensors for biochemical and clinical applications
    corecore