50 research outputs found
Observation of the Effect of Gait-induced Functional Electrical Stimulation on Stroke Patients with Foot Drop
Objective: To explore the effects of functional electrical stimulation and functional mid frequency electrical stimulation on lower limb function and balance function in stroke patients. Methods: 20 cases of stroke patients with foot drop after admission were randomly divided into the observation group and the control group, 10 cases in each group. On the basis of the two groups of patients, the observation group used the gait induced functional electrical stimulation to stimulate the peroneal nerve and the pretibial muscle in the observation group. The control group used the computer medium frequency functional electrical stimulation to stimulate the peroneal nerve and the anterior tibial muscle for 2 weeks. Before and after treatment, the lower extremity simple Fugl-Meyer scale (FMA), the Berg balance scale (BBS) and the improved Ashworth scale were evaluated respectively, and the comparative analysis was carried out in the group and between the groups. Results: After 2 weeks of treatment, the scores of FMA and BBS in the two groups were significantly higher than those before the treatment (P < 0.05), and the scores of FMA and BBS in the observation group were higher than those in the control group (P < 0.05), and the flexor muscle tension of the ankle plantar flexor muscle of the observed group was lower than that of the control group (P < 0.05). Conclusions: Exercise therapy combined with gait induced functional electrical stimulation or computer intermediate frequency functional electrical stimulation can significantly improve lower limb function and balance function in patients with ptosis, and the therapeutic effect of functional electrical stimulation combined with gait is better.
Protective Effects of Costunolide Against D-Galactosamine and Lipopolysaccharide-Induced Acute Liver Injury in Mice
Costunolide, a sesquiterpene isolated from Vladimiria souliei (Franch.) Ling, is known to exhibit anti-inflammatory, anti-viral, and anti-tumor activities. However, the effects of costunolide on liver injury are poorly understood. The current study aimed to investigate the hepatoprotective effects of costunolide against lipopolysaccharide (LPS) and D-galactosamine-induced acute liver injury (ALI) in mice. The results indicated that costunolide (40 mg/kg) could significantly improve the pathological changes of hepatic tissue, and reduced the LPS and D-galactosamine-induced increases of alanine aminotransferase (from 887.24 ± 21.72 to 121.67 ± 6.56 IU/L) and aspartate aminotransferase (from 891.01 ± 45.24 to 199.94 ± 11.53 IU/L) activities in serum. Further research indicated that costunolide significantly reduced malondialdehyde content (from 24.56 ± 1.39 to 9.17 ± 0.25 nmol/ml) and reactive oxygen species (from 203.34 ± 7.68 to 144.23 ± 7.12%), increased the activity of anti-oxidant enzymes superoxide dismutase (from 153.74 ± 10.33 to 262.27 ± 8.39 U/ml), catalase (from 6.12 ± 0.30 to 12.44 ± 0.57 U/ml), and total anti-oxidant capacity (from 0.64 ± 0.06 to 6.29 ± 0.11 U/ml) in hepatic tissues. Western blot results revealed that costunolide may trigger the anti-oxidative defense system by inhibiting kelch-like ECH-associated protein 1 and nuclear factor-related factor 2 (cytosol), increasing nuclear factor-related factor 2 (nucleus), heme oxygenase-1 and NAD (P) H quinone oxidoreductase 1 activity. Moreover, costunolide significantly decreased the protein expression of proinflammatory cytokines including interleukin 1β, interleukin 6, and tumor necrosis factor. Pretreatment with costunolide could reduce the expression of toll-like receptor 4, myeloid differentiation factor 88, p65 (Nucleus), phosphorylated IκB kinase α/β, inhibitor of nuclear factor kappa-B kinase, inhibitor kappa Bα and prevent the expression of phosphorylated inhibitor kappa B kinase which repressed translocation of p65 from cytoplasm to nucleus. In addition, pretreatment with costunolide also inhibited hepatocyte apoptosis by reducing the expression of B-cell lymphoma 2 associated X, cytochrome C, cysteinyl aspartate specific proteinase 3, cysteinyl aspartate specific proteinase 8 and cysteinyl aspartate specific proteinase 9, and by increasing B-cell lymphoma 2. From the above analysis, the protective effects of costunolide against LPS and D-galactosamine-induced ALI in mice may be attributed to its anti-oxidative activity in nuclear factor-related factor 2 signaling pathways, anti-inflammatory suppression in nuclear factor-kappa B signaling pathways, and inhibition of hepatocyte apoptosis. Thus, costunolide may be a potential therapeutic agent in attenuating LPS and D-galactosamine -induced ALI in the future
Hepatoprotective mechanism of Silybum marianum on nonalcoholic fatty liver disease based on network pharmacology and experimental verification
The study aimed to identify the key active components in Silybum marianum (S. marianum) and determine how they protect against nonalcoholic fatty liver disease (NAFLD). TCMSP, DisGeNET, UniProt databases, and Venny 2.1 software were used to identify 11 primary active components, 92 candidate gene targets, and 30 core hepatoprotective gene targets in this investigation, respectively. The PPI network was built using a string database and Cytoscape 3.7.2. The KEGG pathway and GO biological process enrichment, biological annotation, as well as the identified hepatoprotective core gene targets were analyzed using the Metascape database. The effect of silymarin on NAFLD was determined using H&E on pathological alterations in liver tissues. The levels of liver function were assessed using biochemical tests. Western blot experiments were used to observe the proteins that were expressed in the associated signaling pathways on the hepatoprotective effect, which the previous network pharmacology predicted. According to the KEGG enrichment study, there are 35 hepatoprotective signaling pathways. GO enrichment analysis revealed that 61 biological processes related to the hepatoprotective effect of S. marianum were identified, which mainly involved in response to regulation of biological process and immune system process. Silymarin was the major ingredient derived from S. marianum, which exhibited the hepatoprotective effect by reducing the levels of ALT, AST, TC, TG, HDL-C, LDL-C, decreasing protein expressions of IL-6, MAPK1, Caspase 3, p53, VEGFA, increasing protein expression of AKT1. The present study provided new sights and a possible explanation for the molecular mechanisms of S. marianum against NAFLD
Effect of metformin on nonalcoholic fatty liver based on meta-analysis and network pharmacology
Background:Â
Whether metformin is related to nonalcoholic fatty liver disease (NAFLD) is controversial. Our aim was to investigate the relationship between metformin and NAFLD that may predict the metformin potential of these lesions and new prevention strategies in NAFLD patients.
Methods:Â
The meta-analysis was analyzed by Revman 5.3 softwares systematically searched for works published through July 29, 2022. Network pharmacology research based on databases, Cytoscape 3.7.1 software and R software respectively.
Results:Â
The following variables were associated with metformin in NAFLD patients: decreased of alanine aminotransferase (ALT) level (mean difference [MD] = −10.84, 95% confidence interval [CI] = −21.85 to 0.16, P = .05); decreased of aspartate amino transferase (AST) level (MD = −4.82, 95% CI = −9.33 to −0.30, P = .04); decreased of triglyceride (TG) level (MD = −0.17, 95% CI = −0.26 to −0.08, P = .0002); decreased of total cholesterol (TC) level (MD = −0.29, 95% CI = −0.47 to −0.10, P = .003); decreased of insulin resistance (IR) level (MD = −0.42, 95% CI = −0.82 to −0.02, P = .04). In addition, body mass index (BMI) (MD = −0.65, 95% CI = −1.46 to 0.16, P = .12) had no association with metformin in NAFLD patients. 181 metformin targets and 868 NAFLD disease targets were interaction analyzed, 15 core targets of metformin for the treatment of NAFLD were obtained. The effect of metformin on NAFLD mainly related to cytoplasm and protein binding, NAFLD, hepatitis B, pathway in cancer, toll like receptor signaling pathway and type 2 diabetes mellitus (T2DM). The proteins of hypoxia inducible factor-1 (HIF1A), nuclear factor erythroid 2-related factor (NFE2L2), nitric oxide synthase 3 (NOS3), nuclear receptor subfamily 3 group C member 1 (NR3C1), PI3K catalytic subunit alpha (PIK3CA), and silencing information regulator 2 related enzyme 1 (SIRT1) may the core targets of metformin for the treatment of NAFLD.
Conclusion:Â
Metformin might be a candidate drug for the treatment of NAFLD which exhibits therapeutic effect on NAFLD patients associated with ALT, AST, TG, TC and IR while was not correlated with BMI. HIF1A, NFE2L2, NOS3, NR3C1, PIK3CA, and SIRT1 might be core targets of metformin for the treatment of NAFLD
Integrated machine learning identifies a cellular senescence-related prognostic model to improve outcomes in uterine corpus endometrial carcinoma
BackgroundUterine Corpus Endometrial Carcinoma (UCEC) stands as one of the prevalent malignancies impacting women globally. Given its heterogeneous nature, personalized therapeutic approaches are increasingly significant for optimizing patient outcomes. This study investigated the prognostic potential of cellular senescence genes(CSGs) in UCEC, utilizing machine learning techniques integrated with large-scale genomic data.MethodsA comprehensive analysis was conducted using transcriptomic and clinical data from 579 endometrial cancer patients sourced from the Cancer Genome Atlas (TCGA). A subset of 503 CSGs was assessed through weighted gene co-expression network analysis (WGCNA) alongside machine learning algorithms, including Gaussian Mixture Model (GMM), support vector machine - recursive feature elimination (SVM-RFE), Random Forest, and eXtreme Gradient Boosting (XGBoost), to identify key differentially expressed cellular senescence genes. These genes underwent further analysis to construct a prognostic model.ResultsOur analysis revealed two distinct molecular clusters of UCEC with significant differences in tumor microenvironment and survival outcomes. Utilizing cellular senescence genes, a prognostic model effectively stratified patients into high-risk and low-risk categories. Patients in the high-risk group exhibited compromised overall survival and presented distinct molecular and immune profiles indicative of tumor progression. Crucially, the prognostic model demonstrated robust predictive performance and underwent validation in an independent patient cohort.ConclusionThe study emphasized the significance of cellular senescence genes in UCEC progression and underscored the efficacy of machine learning in developing reliable prognostic models. Our findings suggested that targeting cellular senescence holds promise as a strategy in personalized UCEC treatment, thus warranting further clinical investigation
The rehabilitation efficacy of diaphragmatic breathing combined with limb coordination training for lower limb lymphedema following gynecologic cancer surgery
ObjectiveTo investigate the impact of diaphragmatic breathing combined with limb training on lower limb lymphedema following surgery for gynecological cancer.MethodsFrom January 2022 to May 2022, 60 patients with lower limb lymphedema post-gynecologic cancer surgery were chosen. They were split into a control group (n = 30) and a treatment group (n = 30). The control group underwent complex decongestive therapy (CDT) for managing lower limb lymphedema after gynecologic cancer surgery, while the treatment group received diaphragmatic breathing combined with limb coordination training alongside CDT. Both groups completed a 4-week treatment regimen. The lower limb lymphedema symptoms were evaluated using the genital, lower limb, buttock, and abdomen (GCLQ) scores; bilateral lower limb circumference measurements; and anxiety and depression scores.ResultsCompared to sole CDT administration, individuals undergoing diaphragmatic breathing coupled with limb coordination training experienced notable reductions in scores for the self-perceived symptom assessment questionnaire (GCLQ), bilateral lower limb circumference, as well as anxiety and depression scores.ConclusionThe incorporation of diaphragmatic breathing combined withalongside limb coordination training can accelerate and augment the efficacy of treating lower limb lymphedema post-gynecologic cancer surgery
Risk and Prognostic Factors for BRAFV600E Mutations in Papillary Thyroid Carcinoma
Background. Over the past ten years, the incidence rate of papillary thyroid carcinoma (PTC) worldwide has been increasing rapidly year by year, with the incidence rate increasing 6% annually. PTC has become the malignant tumor with the highest growth rate in the world that fourteen PTC-related mutant genes have been identified. Whether the BRAFV600E mutation related to more aggressive clinicopathologic features and worse outcome in PTC remains variable and controversial. We aim to investigate the risk factors that may predict the BRAFV600E mutation potential of these lesions and new prevention strategies in PTC patients. Methods. A total of 9,908 papillary thyroid carcinoma patients with average 74.6% BRAFV600E mutations were analyzed (RevMan 5.3 software) in this study. The PubMed, Embase, and ISI Web of Science databases were systematically searched for works published through December 15, 2021. Results. The following variables were associated with an increased risk of BRAFV600E mutation in PTC patients: age >= 45 years (OR = 1.39, 95%CI = 1.21 - 1.60, p 1 cm) (OR = 0.51, 95%CI = 0.32 - 0.81, p = 0.005) and distant metastasis (OR = 0.69, 95% CI = 0.22 - 2.21, p = 0.54) had no association or risk with BRAF(V600E )mutation in PTC patients. Conclusion. Our systematic review identified the following significant risk factors of BRAF(V600E) mutation in PTC patients: age (>= 45 years), gender (male), multifocality, lymph node metastasis, vascular invasion, extrathyroidal extension, and advanced tumor node metastasis stage (stages III and IV). Tumor size (> 1 cm) and distant metastasis do not appear to be correlated with BRAFV600E mutation in PTC patients
Decoding the Mechanism behind the Pathogenesis of the Focal Segmental Glomerulosclerosis
Focal segmental glomerulosclerosis (FSGS) is a chronic glomerular disease associated with podocyte injury which is named after the pathologic features of the kidney. The aim of this study is to decode the key changes in gene expression and regulatory network involved in the formation of FSGS. Integrated network analysis included Gene Expression Omnibus (GEO) datasets to identify differentially expressed genes (DEGs) between FSGS patients and healthy donors. Bioinformatics analysis was used to identify the roles of the DEGs and included the development of protein-protein interaction (PPI) networks, Gene Ontology (GO), and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses, and the key modules were assured. The expression levels of DEGs were validated using the additional dataset. Eventually, transcription factors and ceRNA networks were established to illuminate the regulatory relationships in the formation of FSGS. 1130 DEGs including 475 upregulated genes and 655 downregulated genes with functional enrichment analysis were determined. Further analysis uncovered that the validated hub genes were defined as candidate genes, including Complement C3a Receptor 1 (C3AR1), C-C Motif Chemokine Receptor 1(CCR1), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), Melatonin Receptor 1A (MTNR1A), and Purinergic Receptor P2Y13 (P2RY13). More importantly, we identified transcription factors and mRNA-miRNA-lncRNA regulatory networks associated with the candidate genes. The candidate genes and regulatory networks discovered in this study can help to comprehend the molecular mechanism of FSGS and supply potential targets for the diagnosis and therapy of FSGS