19,270 research outputs found

    A New Photometric Model of the Galactic Bar using Red Clump Giants

    Full text link
    We present a study of the luminosity density distribution of the Galactic bar using number counts of red clump giants (RCGs) from the OGLE-III survey. The data were recently published by Nataf et al. (2013) for 9019 fields towards the bulge and have 2.94×1062.94\times 10^6 RC stars over a viewing area of 90.25deg290.25 \,\textrm{deg}^2. The data include the number counts, mean distance modulus (μ\mu), dispersion in μ\mu and full error matrix, from which we fit the data with several tri-axial parametric models. We use the Markov Chain Monte Carlo (MCMC) method to explore the parameter space and find that the best-fit model is the E3E_3 model, with the distance to the GC is 8.13 kpc, the ratio of semi-major and semi-minor bar axis scale lengths in the Galactic plane x0,y0x_{0},y_{0}, and vertical bar scale length z0z_0, is x0:y0:z01.00:0.43:0.40x_0:y_0:z_0 \approx 1.00:0.43:0.40 (close to being prolate). The scale length of the stellar density profile along the bar's major axis is \sim 0.67 kpc and has an angle of 29.429.4^\circ, slightly larger than the value obtained from a similar study based on OGLE-II data. The number of estimated RC stars within the field of view is 2.78×1062.78 \times 10^6, which is systematically lower than the observed value. We subtract the smooth parametric model from the observed counts and find that the residuals are consistent with the presence of an X-shaped structure in the Galactic centre, the excess to the estimated mass content is 5.8\sim 5.8%. We estimate the total mass of the bar is 1.8×1010M\sim 1.8 \times 10^{10} M_\odot. Our results can be used as a key ingredient to construct new density models of the Milky Way and will have implications on the predictions of the optical depth to gravitational microlensing and the patterns of hydrodynamical gas flow in the Milky Way.Comment: 15 pages, 6 figures, 4 tables. MNRAS accepte

    Delay-dependent robust stability of stochastic delay systems with Markovian switching

    Get PDF
    In recent years, stability of hybrid stochastic delay systems, one of the important issues in the study of stochastic systems, has received considerable attention. However, the existing results do not deal with the structure of the diffusion but estimate its upper bound, which induces conservatism. This paper studies delay-dependent robust stability of hybrid stochastic delay systems. A delay-dependent criterion for robust exponential stability of hybrid stochastic delay systems is presented in terms of linear matrix inequalities (LMIs), which exploits the structure of the diffusion. Numerical examples are given to verify the effectiveness and less conservativeness of the proposed method

    Neutron spin polarization in strong magnetic fields

    Full text link
    The effects of strong magnetic fields on the inner crust of neutron stars are investigated after taking into account the anomalous magnetic moments of nucleons. Energy spectra and wave functions for protons and neutrons in a uniform magnetic field are provided. The particle spin polarizations and the yields of protons and neutrons are calculated in a free Fermi gas model. Obvious spin polarization occurs when B1014B\geq10^{14}G for protons and B1017B\geq10^{17}G for neutrons, respectively. It is shown that the neutron spin polarization depends solely on the magnetic field strength.Comment: Replaced by the revised version; 10 pages, including 3 eps figure

    Bose-Einstein condensation in linear sigma model at Hartree and large N approximation

    Full text link
    The BEC of charged pions is investigated in the framework of O(4) linear sigma model. By using Cornwall-Jackiw-Tomboulis formalism, we have derived the gap equations for the effective masses of the mesons at finite temperature and finite isospin density. The BEC is discussed in chiral limit and non-chiral limit at Hartree approximation and also at large N approximation.Comment: 11 pages, 9 figure

    Quadratic Quantum Measurements

    Full text link
    We develop a theory of quadratic quantum measurements by a mesoscopic detector. It is shown that quadratic measurements should have non-trivial quantum information properties, providing, for instance, a simple way of entangling two non-interacting qubits. We also calculate output spectrum of a quantum detector with both linear and quadratic response continuously monitoring coherent oscillations in two qubits.Comment: 5 pages, 2 figure

    Effects of solute concentrations on kinetic pathways in Ni-Al-Cr alloys

    Full text link
    The kinetic pathways resulting from the formation of coherent L12-ordered y'-precipitates in the g-matrix (f.c.c.) of Ni-7.5 Al-8.5 Cr at.% and Ni-5.2 Al-14.2 Cr at.% alloys, aged at 873 K, are investigated by atom-probe tomography (APT) over a range of aging times from 1/6 to 1024 hours; these alloys have approximately the same volume fraction of the y'-precipitate phase. Quantification of the phase decomposition within the framework of classical nucleation theory reveals that the y-matrix solid-solution solute supersaturations of both alloys provide the chemical driving force, which acts as the primary determinant of the nucleation behavior. In the coarsening regime, the temporal evolution of the y'-precipitate average radii and the y-matrix supersaturations follow the predictions of classical coarsening models, while the temporal evolution of the y'-precipitate number densities of both alloys do not. APT results are compared to equilibrium calculations of the pertinent solvus lines determined by employing both Thermo-Calc and Grand-Canonical Monte Carlo simulation.Comment: Submitted to Acta Materialia, June, 200

    Emergence of intrinsic superconductivity below 1.178 K in the topologically non-trivial semimetal state of CaSn3

    Get PDF
    Topological materials which are also superconducting are of great current interest, since they may exhibit a non-trivial topologically-mediated superconducting phase. Although there have been many reports of pressure-tuned or chemical-doping-induced superconductivity in a variety of topological materials, there have been few examples of intrinsic, ambient pressure superconductivity in a topological system having a stoichiometric composition. Here, we report that the pure intermetallic CaSn3 not only exhibits topological fermion properties but also has a superconducting phase at 1.178 K under ambient pressure. The topological fermion properties, including the nearly zero quasi-particle mass and the non-trivial Berry phase accumulated in cyclotron motions, were revealed from the de Haas-van Alphen (dHvA) quantum oscillation studies of this material. Although CaSn3 was previously reported to be superconducting at 4.2K, our studies show that the superconductivity at 4.2K is extrinsic and caused by Sn on the degraded surface, whereas its intrinsic bulk superconducting transition occurs at 1.178 K. These findings make CaSn3 a promising candidate for exploring new exotic states arising from the interplay between non-trivial band topology and superconductivity, e.g. topological superconductivityComment: 20 pages,4 figure
    corecore