10,464 research outputs found

    Private and Governmental Barriers Affecting International Market Contestability: Current and Prospective Remedies

    Full text link
    Several interesting developments indicate that world attention is increasingly focusing on a novel category of trade barriers: non-tariff and non-border barriers. Following the Uruguay Round (the eighth round of negotiations under the General Agreement on Tariffs and Trade, GATT ), scholars and officers of international organizations have expressed hope that international market contestability will become a major goal of future international policy negotiations. Their studies have focused on the links between trade policy and competition policy, and have concluded that anticompetitive business practices are a potent barrier to international market contestability and might cause a loss of confidence in the free trade ideal. The present work is dedicated to analyzing and developing a thorough understanding of the nature of private and hybrid private-public business practices affecting market access and contestability. The conclusions of the present work will show how the WTO panel decision in the film and paper case might affect the current international efforts to bring the issues of restrictive business practices within the competence of the WTO

    Design criteria for ultrafast optical parametric amplifiers

    Get PDF
    open2noOptical parametric amplifiers (OPAs) exploit second-order nonlinearity to transfer energy from a fixed frequency pump pulse to a variable frequency signal pulse, and represent an easy way of tuning over a broad range the frequency of an otherwise fixed femtosecond laser system. OPAs can also act as broadband amplifiers, transferring energy from a narrowband pump to a broadband signal and thus considerably shortening the duration of the pump pulse. Due to these unique properties, OPAs are nowadays ubiquitous in ultrafast laser laboratories, and are employed by many users, such as solid state physicists, atomic/molecular physicists, chemists and biologists, who are not experts in ultrafast optics. This tutorial paper aims at providing the non-specialist reader with a self-consistent guide to the physical foundations of OPAs, deriving the main equations describing their performance and discussing how they can be used to understand their most important working parameters (frequency tunability, bandwidth, pulse energy/repetition rate scalability, control over the carrier-envelope phase of the generated pulses). Based on this analysis, we derive practical design criteria for OPAs, showing how their performance depends on the type of the nonlinear interaction (crystal type, phase-matching configuration, crystal length), on the characteristics of the pump pulse (frequency, duration, energy, repetition rate) and on the OPA architecture.Manzoni, C.; Cerullo, G.Manzoni, Cristian; Cerullo, GIULIO NICOL

    Ecohydrological Modeling in Agroecosystems: Examples and Challenges

    Get PDF
    Human societies are increasingly altering the water and biogeochemical cycles to both improve ecosystem productivity and reduce risks associated with the unpredictable variability of climatic drivers. These alterations, however, often cause large negative environmental consequences, raising the question as to how societies can ensure a sustainable use of natural resources for the future. Here we discuss how ecohydrological modeling may address these broad questions with special attention to agroecosystems. The challenges related to modeling the two‐way interaction between society and environment are illustrated by means of a dynamical model in which soil and water quality supports the growth of human society but is also degraded by excessive pressure, leading to critical transitions and sustained societal growth‐collapse cycles. We then focus on the coupled dynamics of soil water and solutes (nutrients or contaminants), emphasizing the modeling challenges, presented by the strong nonlinearities in the soil and plant system and the unpredictable hydroclimatic forcing, that need to be overcome to quantitatively analyze problems of soil water sustainability in both natural and agricultural ecosystems. We discuss applications of this framework to problems of irrigation, soil salinization, and fertilization and emphasize how optimal solutions for large‐scale, long‐term planning of soil and water resources in agroecosystems under uncertainty could be provided by methods from stochastic control, informed by physically and mathematically sound descriptions of ecohydrological and biogeochemical interactions

    GANs for Integration of Deterministic Model and Observations in Marine Ecosystem

    Get PDF
    Monitoring the marine ecosystem can be done via observations (either in-situ or satellite) and via deterministic models. However, each of these methods has some drawbacks: observations can be accurate but insufficient in terms of temporal and spatial coverage, while deterministic models cover the whole marine ecosystem but can be inaccurate. This work aims at developing a deep learning model to reproduce the biogeochemical variables in the Mediterranean Sea, integrating observations and the output of an existing deterministic model of the marine ecosystem. In particular, two deep learning architectures will be proposed and tested: first EmuMed, an emulator of the deterministic model, and then InpMed, which consists of an improvement of the latter by the addition of information provided by in-situ and satellite observations. Results show that EmuMed can successfully reproduce the output of the deterministic model, while ImpMed can successfully make use of the additional information provided, thus improving our ability to monitor the biogeochemical variables in the Mediterranean Sea

    Casimir force on a piston

    Full text link
    We consider a massless scalar field obeying Dirichlet boundary conditions on the walls of a two-dimensional L x b rectangular box, divided by a movable partition (piston) into two compartments of dimensions a x b and (L-a) x b. We compute the Casimir force on the piston in the limit L -> infinity. Regardless of the value of a/b, the piston is attracted to the nearest end of the box. Asymptotic expressions for the Casimir force on the piston are derived for a << b and a >> b.Comment: 10 pages, 1 figure. Final version, accepted for publication in Phys. Rev.

    A Self-Adaptive Approach to Exploit Topological Properties of Different GAs’ Crossover Operators

    Get PDF
    Evolutionary algorithms (EAs) are a family of optimization algorithms inspired by the Darwinian theory of evolution, and Genetic Algorithm (GA) is a popular technique among EAs. Similar to other EAs, common limitations of GAs have geometrical origins, like premature convergence, where the final population’s convex hull might not include the global optimum. Population diversity maintenance is a central idea to tackle this problem but is often performed through methods that constantly diminish the search space’s area. This work presents a self- adaptive approach, where the non-geometric crossover is strategically employed with geometric crossover to maintain diversity from a geometrical/topological perspective. To evaluate the performance of the proposed method, the experimental phase compares it against well-known diversity maintenance methods over well-known benchmarks. Experimental results clearly demonstrate the suitability of the proposed self-adaptive approach and the possibility of applying it to different types of crossover and EAs

    Reduced Basis Method for Parametrized Elliptic Optimal Control Problems

    Get PDF
    We propose a suitable model reduction paradigm-the certified reduced basis method (RB)-for the rapid and reliable solution of parametrized optimal control problems governed by partial differential equations. In particular, we develop the methodology for parametrized quadratic optimization problems with elliptic equations as a constraint and infinite-dimensional control variable. First, we recast the optimal control problem in the framework of saddle-point problems in order to take advantage of the already developed RB theory for Stokes-type problems. Then, the usual ingredients of the RB methodology are called into play: a Galerkin projection onto a low-dimensional space of basis functions properly selected by an adaptive procedure; an affine parametric dependence enabling one to perform competitive offline-online splitting in the computational procedure; and an efficient and rigorous a posteriori error estimate on the state, control, and adjoint variables as well as on the cost functional. Finally, we address some numerical tests that confirm our theoretical results and show the efficiency of the proposed technique. Copyright \ua9 by SIAM. Unauthorized reproduction of this article is prohibited

    Ultrafast Optical Control of the Electronic Properties of ZrTe5ZrTe_5

    Get PDF
    We report on the temperature dependence of the ZrTe5ZrTe_5 electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T* ∌\sim 160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe5ZrTe_5
    • 

    corecore