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Abstract
Monitoring the marine ecosystem can be done via observations (either
in-situ or satellite) and via deterministic models. However, each of
these methods has some drawbacks: observations can be accurate but
insufficient in terms of temporal and spatial coverage, while
deterministic models cover the whole marine ecosystem but can be
inaccurate. This work aims at developing a deep learning model to
reproduce the biogeochemical variables in the Mediterranean Sea,
integrating observations and the output of an existing deterministic
model of the marine ecosystem. In particular, two deep learning
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architectures will be proposed and tested: first EmuMed, an emulator of
the deterministic model, and then InpMed, which consists of an
improvement of the latter by the addition of information provided by
in-situ and satellite observations. Results show that EmuMed can
successfully reproduce the output of the deterministic model, while
ImpMed can successfully make use of the additional information
provided, thus improving our ability to monitor the biogeochemical
variables in the Mediterranean Sea.

1 Introduction
Improving the capability of monitoring and forecasting the status of the
marine ecosystem has important implications (e.g. sustainable
approaches to fishing and aquaculture, mitigation of pollution, and
eutrophication), especially considering the changes caused by human
activities [6]. An unprecedented improvement in monitoring the oceans
has arisen from satellite sensors in the 90s and in situ autonomous
oceanographic instruments, such as float in the 2000s. Floats consist of
a two meters long robotic device, that collects marine variable data by
diving in the ocean and varying its depth; for more details see the GOOS
(Global Ocean Observing System) website [1]. While these instruments
do not need human intervention and provide profiles while the battery
lasts, however, they are expensive and thus perform relatively few
measurements compared to the whole area to cover (Fig. 1 shows the
distribution of the float measurement collected during 2015 over the
entire Mediterranean sea), which, consequently, cannot be modeled by
only relying on these observations. Satellites cover with high resolution
the whole marine domain but only at the surface and they suffer from
cloud cover. Hence, observational data available are largely spatially
sparse, and with a scarcity of series spanning more than a few decades.
Deterministic models have been exploited to simulate the marine
environment, as they can provide reanalyses and predictions for the
whole 3D domain. However, uncertainties in parameterization and
input data and high computational costs can impact their reliability and
applicability. The current state-of-the-art deterministic marine
ecosystem modeling merges observations (e.g. satellite ocean color,
BGC argo float, and so on) with ocean model through data assimilation
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methods [7]. The incorporation of machine learning (ML) techniques
offers alternative and stimulant opportunities for advancing the
capacity of integrating theory, knowledge and observations to simulate
the marine environment [13]. That is, ML is a new way, compared to
existing data assimilation methods, of integrating observations and
theory. The present work aims to develop a novel deep learning
approach to assess spatial and temporal variability of physical and
biogeochemical variables in the marine domains, that combines the
knowledge provided by the deterministic model and the in-situ and
satellite observations. Embedding of ML techniques to physical and
biogeochemical oceanography received significant attention in recent
years [12], for a comprehensive review of the current state of the art of
ML application to this field the reader can refer to [13].

The deep learning method proposed in this work is based on the
approach of filling missing pixels of a considered image, which is a well-
known and extensively studied computer vision task, often referred to
as image inpainting [3]. Since this method has been created specifically
to synthesize visually realistic, coherent, and semantic plausible pixels
for missing regions, our idea was to exploit its architecture to assemble
a model capable of skilfully reconstructing the physical and
biogeochemical variables and also to fill the information gap provoked
by the inhomogeneity of in-situ observation. This novel approach has
been implemented in the Mediterranean Sea, a semi-enclosed sea
where a rich collection of model, satellite, and in-situ data are already
available: a validated model [5], high-resolution satellite data from
Copernicus [4] and in-situ BGC-Argo floats [14]. The first ML model
that we will introduce, named EmuMed, exploits Generative Adversarial
Networks (GAN) [8], and is based on an inpainting architecture [9].
EmuMed learns spatial and temporal relationship among the marine
ecosystem variables starting from the deterministic model MedBFM
output thanks to the nature of its architecture. The second ML model,
that we define is InpMed, adds observations to EmuMed while
maintaining the same architecture of EmuMed. We remark that
modeling marine ecosystem variables by ML presents several
challenges. First of all, marine datasets span four dimensions (i.e.,
temporal, vertical and two horizontal) which are characterized by
different scales and units (e.g., kilometer and meter respectively for
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horizontal and vertical spatial dimensions). Moreover, unlike many ML
applications, in geosciences we cannot rely on ground-truth data.
Indeed, the deterministic model is just an approximation itself of the
marine ecosystems, with the observations providing only a very sparse
and scarce picture of it. These motivations encourage us to select a
convolutional-based architecture, as it is naturally suitable for dealing
with spatial data. The main idea was to treat horizontal maps of the
considered domain as images that capture the marine environment as if
it were photography, where the classical RGB channels are substituted
with channels representing the marine variables. Indeed, in images, the
three colors channels are strongly interrelated and dependent on each
other, as they need to collaborate to produce a whole range of colors.
Similarly, we aim to introduce an intrinsic strong relation between
marine ecosystem variables as they are also naturally correlated. Then,
considering that dealing with in-situ measurements leads also to the
aforementioned problem of the insufficient spatial coverage of
information, an architecture capable of filling areas where
measurements are missing becomes essential. These considerations
lead us to choose as learning architecture GAN specifically constructed
to deal with inpainting tasks to deal with horizontal sections of the
marine domain.

The paper is structured as follows: Sect. 2 provides a description of
the proposed models. In particular, Sect. 2.1 introduces the deep
learning architecture, Sect. 2.2 defines and describes EmuMed, while
Sect. 2.3 illustrates InpMed. In Sect. 3 the experimental settings are
provided and experimental results are reported in Sect. 4. Section 5
recalls the main contributions of the paper and provides directions for
further research.
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Fig. 1. Map of the float measurements over the Mediterranean Sea collected during the year
2015.

2 Material and Method
In this section, we introduce the deep learning architecture employed.
In Sect. 2.2 we discuss an intermediary version of the method we build:
EmuMed. Finally, a final and improved model, InpMed, will be presented
and discussed in Sect. 2.3.

2.1 Deep Learning Architecture
The deep learning architecture employed will take advantage of
Convolutional Neural Network (CNN) [10]. CNN performs proficiently
in machine learning problems dealing with multiple dimensional input
domains, such as image data, since they conserve the spatial structure
of the input; for further details, the reader can refer to [2]. The models
introduced in this work are based on a convolutional inpainting
architecture [9], which is in turn based on Generative Adversarial
Networks (GAN) [8]. The original purpose of GAN is to train the
generative model by using an auxiliary network, called discriminator,
which serves to distinguish real images with respect to the one
generated by the generative model. The general inpainting architecture
consists of the training of a generative network to “fill-in” in the most
realistic way possible an image with one (or even more) parts of it
masked. In this paper, we will consider an inpainting model composed
of three interacting convolutional neural networks: the completion
network used to complete the image; the global discriminator, and the
local discriminator, which are two auxiliary networks. The completion
and the discriminators compete in a two-player game, where
simultaneous improvements are made to both of them during the
training phase. Thus, while the completion network learns how to fill
the holes in a realistic and coherent way, discriminators are trained to
understand whether or not the provided input has been completed. The
improvement of the completion implies a betterment of the
discriminators’ performance; and vice-versa, the improvement of the
discriminators’ capability to recognize completed input implies a rise in
the completion performance, to fool the discriminators.
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Completion Network. The completion network is a convolutional
neural network, consisting of 17 layers, as detailed in [9]. The
architecture exploits an encoder-decoder technique that initially
decreases the resolution of the input features to reduce the
computational effort, and then restores the original resolution. Like in
image generation task, the input of the completion network is an RGB
image with binary channels, where 1 indicates that a mask is applied to
the input pixel, and the output is an RGB image, properly completed.

Discriminator Networks. Two discriminators play against the
completion network introduced above: the global discriminator and the
local discriminator. The former tests the reliability of the input in its
entirety, while the latter focuses on a particular and smaller area, thus
paying more attention to details. The discriminators take as input the
complete image (adequately re-scaled), both of them are implemented
using convolutional neural networks followed by a fully-connected
layer producing a real-valued vector as output. Finally, the two resulting
vectors are concatenated and passed again as input of a fully-
convolutional layer, that returns a continuous value indicating the
probability that the provided input is real or fake.

Training. The loss function employed to train the completion
network, introduced in [11], is the weighted MSE defined as follows:

(1)

where  stands for the pixel-wise multiplication and  is the
Euclidean norm. Furthermore, the GAN loss [8] is used for training
together completion and discriminators network. While discriminators
aim to maximize the average of the log-probability of real images and
the log of the inverse probability for fake images, the generator aims to
minimize the log of the inverse probability predicted by the
discriminator for fake images. Therefore, the generator tries to
minimize the following function while the discriminator tries to
maximize it:

(2)

where  is the input mask,  is a random mask,  is the
discriminator’s estimate of the probability for the real input x with
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mask  to be real,  is the discriminator’s estimate of the
probability for the fake input x to be real, and  indicate the average
over the training input. Finally, taking in account both Eq. 1 and Eq. 2,
the resulting loss function is:

(3)

where  is a fixed hyperparameter. The training of the algorithm,
which is schematized in Algorithm 1, consists into three main phases:
during phase 1 the completion network is trained among all the
features of the training set for  epochs; then, during phase 2, the
completion network is fixed and the discriminator network is trained
for  epochs; finally, during phase 3 both the completion network and
the discriminators are trained at the same time for  epochs.
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2.2 EmuMed
The EmuMed is the first model that we present in this paper, named
after the fact that it behaves as an emulator (meaning that it is learning
information from) of the deterministic model MedBFM [5, 15]. The
architecture underlying EmuMed is the one presented in Sect. 2.1: a
generative convolutional neural network trained through adversarial
loss. The input (tensors) employed for the training are obtained from a
discretization of data generated through a simulation of the
deterministic model. These tensors represent 2-dimensional maps of a
fixed region of the Mediterranean Sea (here, with the term map we
denote a horizontal section of the region at a fixed depth). The role that
pixels accomplished for the image completion task is carried out by
rectangles that represent a discretization area of the Mediterranean
Sea, while the standard RGB channels are substituted with channels
that contain values representing the oceanographic physical and the
biogeochemical variables that we aim to reproduce. Thus, EmuMed
consists of a generative model capable of reconstructing the biological
and chemical interactions for the whole Mediterranean Sea domain
considered.

2.3 InpMed
InpMed is the second model presented in this paper, obtained starting
from EmuMed and then performing a further training phase adding
both in-situ measurements collected by the float devices and by
satellite observations. This additional training phase is performed
according, again, to phase 1 of the Algorithm 1 described in Sect. 2.1.
The weights of EmuMed are updated to fit these new data, producing a
more reliable prediction that is closer to the real marine ecosystem
conformation. InpMed ensures an improvement in the simulating
capability of the model, as the convolutional structure guarantees a
local distribution of information provided by observation also in
neighboring areas of these measurements. Another crucial point is that
there are certain marine indicators that are not measured either
through in-situ devices or via satellite information, such as the primary
production, which prediction can be improved anyway by taking
advantage of a combination of the ML architecture and of the observed
data. In fact, relations between variables are learned through the
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training of EmuMed; subsequently, InpMed exploits the information
provided by the measured variables and the relations learned from the
deterministic model to improve the prediction for both the measured
variables and the ones that cannot be measured.

3 Experimental Setting
The geographical area considered in this work is the western
Mediterranean portion, specifically, the one with latitude ranging
between 36 and 44 and longitude varying between 2 and 9 and the
vertical dimension covers a depth ranging from 0 to 600 m. It consists
of the portion between southern France and northern Africa, delimited
on the east limit by Corsica and Sardinia and on the west limit by
Balearic islands. The spatial resolution is 12 km in both latitude and
longitude axes and 20 m in the vertical one. The time period covers the
year 2015 which is discretized on a weekly basis. Therefore, the 4-
dimensional input tensor consists of a horizontal map, of the central-
western Mediterranean Sea area, whose dimensions are: length, height,
width, and channel. Each channel of the tensor, in turn, collects one
marine ecosystem variable. Namely, the variable considered are
temperature, salinity, oxygen, chlorophyll-a, and primary production.
All the variables can be obtained via the deterministic model MedBFM,
while only the first four are collected via float measurement (as it is not
possible to measure primary production via any sensor), and only
chlorophyll-a can be inferred through satellite. Each location in the 3D
field has 5 variables associated and a time resolution one week is used
(thus, 52 weekly observations are available). Due to their nature, each
float provides a 1D profile, where latitude and longitude are fixed and
only the depth can change. Finally, since satellites can observe only the
surface of the water, they provide 2D data (with holes due to cloud
covers). For the training of EmuMed, we used the following hyper-
parameters (summarized in Table 1): the completion network is
trained for 5000 epochs, the discriminator network is trained for 200
epochs, and finally the two networks are trained simultaneously for
1000 epochs. These hyperparameters have been fixed after an
appropriate preliminary study. The optimizer chosen is
ADADELTA [16], which set the learning rate for each weight in the
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network automatically. The learning rate initial value for both the
completion and the discriminator is set to 0.01. Subsequently, InpMed is
trained for 200 epochs with a learning rate value set initially to 0.01.

Table 1. Experimental settings values. The table on the left describes the parameters
concerning the deep learning architecture. Horizontal lines separate: common parameters,
EmuMed parameters and InpMed parameters. The table on the right represents the parameters
referring to the definition of the input structure.

4 Experimental Results
The Mediterranean case study aims at demonstrating the reliability of
ML reconstruction for marine ecosystem variables and at showing how
the different components of the ML architecture contribute to the
reconstruction quality. To assess the goodness of the proposed
reconstruction, the analysis focus on some statistical properties
(averages and variances) of the simulated fields. In particular, Fig. 2
reports maps of one of the variables (i.e., surface chlorophyll)
demonstrating InpMed capability to emulate the intense spatial
variability of surface marine fields. Figure 3 shows the vertical profiles
of the spatial averages among two given weeks of the year (e.g., one in
winter and one in summer), assessing the capability of the technique to
simulate different seasonal periods for all modeled variables. These
plots compare the original deterministic model MedBFM profile with
the EmuMed and InpMed reconstructions, showing the benefits
provided by the different architectural components. Finally, Fig. 4
compares, via box-plot, the distributions of the standard deviation of

10



the spatial variability of MedBFM and InpMed. Four weeks of the year
are displayed in order to study how the spatial heterogeneity of the
marine proprieties varies throughout the year and how it is handled by
the different models.

Fig. 2. Map of surface chlorophyll produced by (a) MedBFM and reconstructed using (b)
EmuMed.
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Fig. 3. Vertical profile of the spatial averages, varying with depth, over the considered domain.
Variables represented are: (a) temperature, (b) salinity, (c) oxygen, (d) chlorophyll, (e) primary
production. The gray line represents the deterministic vertical profile MedBFM, the orange line
represents the one inferred by EmuMed, and the green represents the vertical profile predicted
by InpMed. Above are reported results relative to week 2 (winter), on the right relative to week
35 (summer), in order to demonstrate the capability of introduced models to predict different
seasonal periods. (Color figure online)

Fig. 4. Box-plots showing the distributions of the standard deviation of the marine variables
computed from the spatial maps at different depths. From top to bottom are shown,
respectively, temperature, salinity, oxygen, chlorophyll (only layers between 0 and 200 m),
primary production (only layers between 0 and 200 m). The box-plot with the median gray line
represents deterministic model MedBFM, while the box-plot with the green median line
represents InpMed. From left to right are shown, respectively, week 1, week 10, week 20 and
week 30 (Color figure online)
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Results show that the EmuMed has learned well to reproduce the
typical mean vertical profiles, simulated by MedBFM, for all variables
but salinity (Fig. 3). Deviations of InpMed from EmuMed profiles (e.g.,
orange and green lines in oxygen, chlorophyll, and primary production
in Fig. 3) highlight how the inclusion of the observations in the ML
architecture introduced possible corrections (i.e., new information) to
the MedBFM simulated fields. Temperature shows that the inclusion of
observations had a marginal effect while salinity shows that
observations bring InpMed profiles closer to MedBFM highlighting a
possible inaccurate reconstruction of EmuMed, that anyway is corrected
in the second phase of the training, confirming the added values of the
two-step architecture implemented in InpMed. Regarding the spatial
variability of horizontal fields of marine variables, maps of Fig. 2 show
qualitatively the good performance of the ML reconstruction. From a
quantitative point of view, the comparison of the standard deviation
boxplots (Fig. 4) shows that the spatial variability of InpMed is
generally higher than MedBFM for all variables in all selected weeks.
This highlights that, when observations are included in the
reconstruction, the ML model InpMed simulates horizontal fields
characterized by more complicated gradients and spatial structures
w.r.t. a possibly too smooth output of the deterministic model.

A separate comment can be done for primary production (i.e., a
variable that is not observed). Despite the mean vertical profiles are not
substantially changed by ML architecture (Fig. 3), it is possible to notice
that the InpMed model differs from the EmuMed even if, during the
training, no observed data have been provided for primary production.
The fact that the variability introduced by the observed variable is
clearly propagated by InpMed can be also observed in Fig. 4. This
evidence confirms that information provided by observed data
improves the InpMed capability to simulate the unobserved variable,
thanks to the relations among variables learned from the output of the
deterministic model by the deep learning architecture exploited.

5 Conclusion
We investigated the integration of an existing ecosystem deterministic
model with in-situ and satellite information through a convolutional
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generative deep learning architecture. Merging these two different
kinds of information allows us to combine their strengths and exploit
them to lessen each other’s limits. We remark that a deep learning
model can also be less computationally expensive, once trained, with
respect to a deterministic one, as it does not require an entire
simulation in order to get specific variable estimations (e.g., primary
production). Such a comparison will be one of the aspects that will be
investigated in future works. Moreover, exploiting the intrinsic
structure of the architecture, the learning framework makes possible
the spread of information provided from the observed variables
(temperature, salinity, oxygen, chlorophyll) also to variables that are
not possible to directly collect via in-situ or satellite measurements
(e.g., primary production). Experimental results on both EmuMed and
ImpMed have confirmed the validity of the proposed approach, showing
that our models can infer correctly information from the deterministic
model and, in the case of ImpMed, also from observations. This work
represents the first step to exploiting deep learning architecture aimed
at merging large deterministic model output with observations to
reconstruct the marine ecosystem’s temporal and spatial variability.
Our main goal will be to extend this architecture by inserting a larger
number of channels so that it became able to reproduce the whole set
of marine ecosystem variables, in particular exploiting this architecture
to model unobserved variables (as we did for primary production) also
with the information provided by observed data. The extension of the
present ML model to the entire Mediterranean Sea represents another
important computational challenge given the significant increase in
data volume to handle.
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