918 research outputs found

    Programa de salud suma vidas reanimación cardiopulmonar en las escuelas

    Get PDF
    Programa de salud basado en la enseñanza de la reanimación cardiopulmonar en las escuelas. Edades comprendidas desde primaria hasta bachiller utilizando una enseñanza en espiral, teniendo en cuenta la edad y la capacidad de integrar conocimientos y llevarlos a cabo. RCP en las escuelas para implicar a niños y jóvenes en esta técnica tan necesaria y transmitir la importancia de saber llevarla a cabo

    Decoding Amyotrophic Lateral Sclerosis: Discovery of Novel Disease-Related Biomarkers and Future Perspectives in Neurodegeneration

    Get PDF
    Amyotrophic lateral sclerosis (ALS) belongs to the group of motor neuron diseases, in which the degeneration, the weakness of voluntary muscles, and death of motor neurons gradually spread along disease progression. ALS comes from Greek language and means “no muscle nourishment” (“amyotrophic”), “area of the spinal cord where affected nerve cells are localized” (“lateral”), and “the degeneration and hardening of the spinal cord” (“sclerosis”). The fundamental contributions of the celebrated neurologist Jean-Martin Charcot at the end of the nineteenth century provided the first description of ALS...

    Large-scale preparation and labelling reactions of deuterated silanes

    Get PDF
    A catalytic synthesis of deuterated silanes SiEt3D, SiMe2PhD and SiPh2D2 is reported that allows their facile generation in a 3–4 g scale, utilizing D2 (0.5 bar) as the hydrogen isotope source and low catalyst loadings (0.01 mol%). The catalyst precursor is the rhodium (III) complex 1, which contains a (η5‐C5Me5)Rh cation stabilized by coordination to a cyclometallated phoshine PMeXyl2 (Xyl = 2,6‐C6H3Me2). The same complex is also an active catalyst for the hydrosilylation of the CO and C≡N bonds of various ketones, aldehydes and α,β‐unsaturated nitriles. Hence, combination of these two properties permits development of a simple and proficient one‐flask, two‐step procedure for the deuterosilylation of these substrates.Ministerio de Ciencia y Tecnología CTQ2010‐17476, Consolider‐Ingenio 2010 CSD2007‐00006Junta de Andalucía FQM‐119, P09‐FQM‐4832Ministerio de Educación AP20080256CONACYT (Mexico) 2293

    Amyotrophic Lateral Sclerosis: A Focus on Disease Progression

    Get PDF
    Since amyotrophic lateral sclerosis (ALS) was discovered and described in 1869 as a neurodegenerative disease in which motor neuron death is induced, a wide range of biomarkers have been selected to identify therapeutic targets. ALS shares altered molecular pathways with other neurodegenerative diseases, such as Alzheimer’s, Huntington’s, and Parkinson’s diseases. However, the molecular targets that directly influence its aggressive nature remain unknown.What is the first link in the neurodegenerative chain of ALS that makes this disease so peculiar? In this review, we will discuss the progression of the disease from the viewpoint of the potential biomarkers described to date in human and animal model samples. Finally, we will consider potential therapeutic strategies for ALS treatment and future, innovative perspectives

    Normal Development and Maturation of Bone Marrow Assessment by Magnetic Resonance Imaging

    Get PDF
    La maduración ósea ocurre de forma ordenada y predecible. Puede documentarse por medio de resonancia magnética incluso antes de que ocurran cambios histológicos, por lo cual es importante su adecuado conocimiento y caracterización.Artículo de revisión4206-4212Skeletal maturation occurs in an orderly and predictable manner. It can be documented by Magnetic Resonance Imaging even before histological changes occurs, so the importance of adequate knowledge and characterization must be stated

    “Ratones de laboratorio”: la radio universitaria como herramienta para divulgar la ciencia en primaria

    Get PDF
    Acercar la ciencia, a través de la radio universitaria, a escolares de primaria de toda la comunidad autónoma de Extremadura. Este ha sido el objetivo del proyecto de divulgación científica “Ratones de Laboratorio”, una iniciativa desarrollada durante el curso académico 2015/2016 y que ha permitido llegar a nueve colegios de la región, y a cerca de medio millar de alumnos entre 3º y 6º de primaria. Se ha tratado de una experiencia con una novedosa metodología de trabajo consistente en la elaboración de espacios radiofónicos donde los protagonistas han sido los propios escolares pero donde previamente estos habían asistido a diversos talleres en los cuales los investigadores de la Universidad de Extremadura explicaban cuestiones científicas de la vida diaria. Este material sonoro ha dado lugar a la confección de un total de 16 programas de radio. Además, los dos mejores espacios han sido reconocidos en la gala de arranque de temporada de la radio-televisión universitaria. En base a los resultados obtenidos, en este artículo se pretende analizar tanto de forma cuantitativa como cualitativa qué ha supuesto esta experiencia para los escolares y analizar cómo influyen acciones como esta en la percepción pública de la ciencia entre la comunidad escolar en edades tempranas

    Sex Differences in Constitutive Autophagy

    Get PDF
    Sex bias has been described nowadays in biomedical research on animal models, although sexual dimorphism has been confirmed widely under pathological and physiological conditions. The main objective of our work was to study the sex differences in constitutive autophagy in spinal cord and skeletal muscle tissue from wild type mice. To examine the influence of sex on autophagy, mRNA and proteins were extracted from male and female mice tissues. The expressions of microtubule-associated protein 1 light chain 3 (LC3) and sequestosome 1 (p62), markers to monitor autophagy, were analyzed at 40, 60, 90, and 120 days of age. We found significant sex differences in the expression of LC3 and p62 in both tissues at these ages. The results indicated that sex and tissue specific differences exist in constitutive autophagy. These data underlined the need to include both sexes in the experimental groups to minimize any sex bias

    Decoding Amyotrophic Lateral Sclerosis: Discovery of Novel Disease-Related Biomarkers and Future Perspectives in Neurodegeneration

    Get PDF
    Amyotrophic lateral sclerosis (ALS) belongs to the group of motor neuron diseases, in which the degeneration, the weakness of voluntary muscles, and death of motor neurons gradually spread along disease progression. ALS comes from Greek language and means “no muscle nourishment” (“amyotrophic”), “area of the spinal cord where affected nerve cells are localized” (“lateral”), and “the degeneration and hardening of the spinal cord” (“sclerosis”). The fundamental contributions of the celebrated neurologist Jean-Martin Charcot at the end of the nineteenth century provided the first description of ALS...

    Signet ring sign

    Get PDF
    En su Glosario de Términos de Radiología Torácica, la Sociedad Fleischner lo define como una imagen en forma de anillo, conformada por el corte transversal de las paredes de un bronquio dilatado y la arteria acompañante adyacente.Glosario radiológico203-20

    Biohybrids for spinal cord injury repair

    Full text link
    This is the peer reviewed version of the following article: Martínez-Ramos, C, Doblado, LR, Mocholi, EL, et al. Biohybrids for spinal cord injury repair. J Tissue Eng Regen Med. 2019; 13: 509-521, which has been published in final form at https://doi.org/10.1002/term.2816. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Spinal cord injuries (SCIs) result in the loss of sensory and motor function with massive cell death and axon degeneration. We have previously shown that transplantation of spinal cord-derived ependymal progenitor cells (epSPC) significantly improves functional recovery after acute and chronic SCI in experimental models, via neuronal differentiation and trophic glial cell support. Here, we propose an improved procedure based on transplantation of epSPC in a tubular conduit of hyaluronic acid containing poly (lactic acid) fibres creating a biohybrid scaffold. In vitro analysis showed that the poly (lactic acid) fibres included in the conduit induce a preferential neuronal fate of the epSPC rather than glial differentiation, favouring elongation of cellular processes. The safety and efficacy of the biohybrid implantation was evaluated in a complete SCI rat model. The conduits allowed efficient epSPC transfer into the spinal cord, improving the preservation of the neuronal tissue by increasing the presence of neuronal fibres at the injury site and by reducing cavities and cyst formation. The biohybrid-implanted animals presented diminished astrocytic reactivity surrounding the scar area, an increased number of preserved neuronal fibres with a horizontal directional pattern, and enhanced coexpression of the growth cone marker GAP43. The biohybrids offer an improved method for cell transplantation with potential capabilities for neuronal tissue regeneration, opening a promising avenue for cell therapies and SCI treatment.Secretaria de Estado de Investigacion, Desarrollo e Innovacion, Grant/Award Number: MAT2015-66666-C3-1-R MINECO/FEDER MAT2015-66666-C3-2-R MINECO/FEDER; Spanish Ministry of Education, Culture and Sports through Laura Rodriguez Doblado, Grant/Award Number: FPU15/04975Martínez-Ramos, C.; Rodriguez Doblado, L.; López Mocholi, E.; Alastrue-Agudo, A.; Sánchez Petidier, M.; Giraldo-Reboloso, E.; Monleón Pradas, M.... (2019). Biohybrids for spinal cord injury repair. Journal of Tissue Engineering and Regenerative Medicine. 13(3):509-521. https://doi.org/10.1002/term.2816S509521133Ahuja, C. S., & Fehlings, M. (2016). Concise Review: Bridging the Gap: Novel Neuroregenerative and Neuroprotective Strategies in Spinal Cord Injury. STEM CELLS Translational Medicine, 5(7), 914-924. doi:10.5966/sctm.2015-0381Alastrue-Agudo, A., Erceg, S., Cases-Villar, M., Bisbal-Velasco, V., Griffeth, R. J., Rodriguez-Jiménez, F. J., & Moreno-Manzano, V. (2014). Experimental Cell Transplantation for Traumatic Spinal Cord Injury Regeneration: Intramedullar or Intrathecal Administration. Methods in Molecular Biology, 23-35. doi:10.1007/978-1-4939-1435-7_3Alastrue-Agudo, A., Rodriguez-Jimenez, F., Mocholi, E., De Giorgio, F., Erceg, S., & Moreno-Manzano, V. (2018). FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. International Journal of Molecular Sciences, 19(1), 200. doi:10.3390/ijms19010200Alfaro-Cervello, C., Soriano-Navarro, M., Mirzadeh, Z., Alvarez-Buylla, A., & Garcia-Verdugo, J. M. (2012). Biciliated ependymal cell proliferation contributes to spinal cord growth. The Journal of Comparative Neurology, 520(15), 3528-3552. doi:10.1002/cne.23104Assunção-Silva, R. C., Gomes, E. D., Sousa, N., Silva, N. A., & Salgado, A. J. (2015). Hydrogels and Cell Based Therapies in Spinal Cord Injury Regeneration. Stem Cells International, 2015, 1-24. doi:10.1155/2015/948040BASSO, D. M., BEATTIE, M. S., & BRESNAHAN, J. C. (1995). A Sensitive and Reliable Locomotor Rating Scale for Open Field Testing in Rats. Journal of Neurotrauma, 12(1), 1-21. doi:10.1089/neu.1995.12.1Bonner, J. F., & Steward, O. (2015). Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells. Brain Research, 1619, 115-123. doi:10.1016/j.brainres.2015.01.006Collins, M. N., & Birkinshaw, C. (2013). Hyaluronic acid based scaffolds for tissue engineering—A review. Carbohydrate Polymers, 92(2), 1262-1279. doi:10.1016/j.carbpol.2012.10.028Donnelly, D. J., & Popovich, P. G. (2008). Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental Neurology, 209(2), 378-388. doi:10.1016/j.expneurol.2007.06.009Erceg, S., Ronaghi, M., Oria, M., García Roselló, M., Aragó, M. A. P., Lopez, M. G., … Stojkovic, M. (2010). Transplanted Oligodendrocytes and Motoneuron Progenitors Generated from Human Embryonic Stem Cells Promote Locomotor Recovery After Spinal Cord Transection. STEM CELLS, 28(9), 1541-1549. doi:10.1002/stem.489Gómez-Villafuertes, R., Rodríguez-Jiménez, F. J., Alastrue-Agudo, A., Stojkovic, M., Miras-Portugal, M. T., & Moreno-Manzano, V. (2015). Purinergic Receptors in Spinal Cord-Derived Ependymal Stem/Progenitor Cells and Their Potential Role in Cell-Based Therapy for Spinal Cord Injury. Cell Transplantation, 24(8), 1493-1509. doi:10.3727/096368914x682828Hesp, Z. C., Goldstein, E. A., Miranda, C. J., Kaspar, B. K., & McTigue, D. M. (2015). Chronic Oligodendrogenesis and Remyelination after Spinal Cord Injury in Mice and Rats. Journal of Neuroscience, 35(3), 1274-1290. doi:10.1523/jneurosci.2568-14.2015Kjell, J., & Olson, L. (2016). Rat models of spinal cord injury: from pathology to potential therapies. Disease Models & Mechanisms, 9(10), 1125-1137. doi:10.1242/dmm.025833Kumar, P., Choonara, Y., Modi, G., Naidoo, D., & Pillay, V. (2015). Multifunctional Therapeutic Delivery Strategies for Effective Neuro-Regeneration Following Traumatic Spinal Cord Injury. Current Pharmaceutical Design, 21(12), 1517-1528. doi:10.2174/1381612821666150115152323Li, G., Che, M.-T., Zhang, K., Qin, L.-N., Zhang, Y.-T., Chen, R.-Q., … Zeng, Y.-S. (2016). Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury. Biomaterials, 83, 233-248. doi:10.1016/j.biomaterials.2015.11.059Li, X., & Dai, J. (2018). Bridging the gap with functional collagen scaffolds: tuning endogenous neural stem cells for severe spinal cord injury repair. Biomaterials Science, 6(2), 265-271. doi:10.1039/c7bm00974gLiang, Y., Walczak, P., & Bulte, J. W. M. (2013). The survival of engrafted neural stem cells within hyaluronic acid hydrogels. Biomaterials, 34(22), 5521-5529. doi:10.1016/j.biomaterials.2013.03.095Lim, S. H., Liu, X. Y., Song, H., Yarema, K. J., & Mao, H.-Q. (2010). The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials, 31(34), 9031-9039. doi:10.1016/j.biomaterials.2010.08.021Liu, C., Huang, Y., Pang, M., Yang, Y., Li, S., Liu, L., … Liu, B. (2015). Tissue-Engineered Regeneration of Completely Transected Spinal Cord Using Induced Neural Stem Cells and Gelatin-Electrospun Poly (Lactide-Co-Glycolide)/Polyethylene Glycol Scaffolds. PLOS ONE, 10(3), e0117709. doi:10.1371/journal.pone.0117709Lu, P., Wang, Y., Graham, L., McHale, K., Gao, M., Wu, D., … Tuszynski, M. H. (2012). Long-Distance Growth and Connectivity of Neural Stem Cells after Severe Spinal Cord Injury. Cell, 150(6), 1264-1273. doi:10.1016/j.cell.2012.08.020Morita, S., & Miyata, S. (2012). Synaptic localization of growth-associated protein 43 in cultured hippocampal neurons during synaptogenesis. Cell Biochemistry and Function, 31(5), 400-411. doi:10.1002/cbf.2914Ortuño-Lizarán, I., Vilariño-Feltrer, G., Martínez-Ramos, C., Pradas, M. M., & Vallés-Lluch, A. (2016). Influence of synthesis parameters on hyaluronic acid hydrogels intended as nerve conduits. Biofabrication, 8(4), 045011. doi:10.1088/1758-5090/8/4/045011Raspa, A., Marchini, A., Pugliese, R., Mauri, M., Maleki, M., Vasita, R., & Gelain, F. (2016). A biocompatibility study of new nanofibrous scaffolds for nervous system regeneration. Nanoscale, 8(1), 253-265. doi:10.1039/c5nr03698dRequejo-Aguilar, R., Alastrue-Agudo, A., Cases-Villar, M., Lopez-Mocholi, E., England, R., Vicent, M. J., & Moreno-Manzano, V. (2017). Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials, 113, 18-30. doi:10.1016/j.biomaterials.2016.10.032Rodriguez-Jimenez, F. J., Alastrue, A., Stojkovic, M., Erceg, S., & Moreno-Manzano, V. (2016). Connexin 50 modulates Sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell and Tissue Research, 365(2), 295-307. doi:10.1007/s00441-016-2421-ySimitzi, C., Ranella, A., & Stratakis, E. (2017). Controlling the morphology and outgrowth of nerve and neuroglial cells: The effect of surface topography. Acta Biomaterialia, 51, 21-52. doi:10.1016/j.actbio.2017.01.023Steward, O., Sharp, K. G., Yee, K. M., Hatch, M. N., & Bonner, J. F. (2014). Characterization of Ectopic Colonies That Form in Widespread Areas of the Nervous System with Neural Stem Cell Transplants into the Site of a Severe Spinal Cord Injury. Journal of Neuroscience, 34(42), 14013-14021. doi:10.1523/jneurosci.3066-14.2014Stokols, S., & Tuszynski, M. H. (2006). Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials, 27(3), 443-451. doi:10.1016/j.biomaterials.2005.06.039Straley, K. S., Foo, C. W. P., & Heilshorn, S. C. (2010). Biomaterial Design Strategies for the Treatment of Spinal Cord Injuries. Journal of Neurotrauma, 27(1), 1-19. doi:10.1089/neu.2009.0948Theodore, N., Hlubek, R., Danielson, J., Neff, K., Vaickus, L., Ulich, T. R., & Ropper, A. E. (2016). First Human Implantation of a Bioresorbable Polymer Scaffold for Acute Traumatic Spinal Cord Injury. Neurosurgery, 79(2), E305-E312. doi:10.1227/neu.0000000000001283Tian, L., Prabhakaran, M. P., & Ramakrishna, S. (2015). Strategies for regeneration of components of nervous system: scaffolds, cells and biomolecules. Regenerative Biomaterials, 2(1), 31-45. doi:10.1093/rb/rbu017Vilariño-Feltrer, G., Martínez-Ramos, C., Monleón-de-la-Fuente, A., Vallés-Lluch, A., Moratal, D., Barcia Albacar, J. A., & Monleón Pradas, M. (2016). Schwann-cell cylinders grown inside hyaluronic-acid tubular scaffolds with gradient porosity. Acta Biomaterialia, 30, 199-211. doi:10.1016/j.actbio.2015.10.040Vismara, I., Papa, S., Rossi, F., Forloni, G., & Veglianese, P. (2017). Current Options for Cell Therapy in Spinal Cord Injury. Trends in Molecular Medicine, 23(9), 831-849. doi:10.1016/j.molmed.2017.07.005Wen, Y., Yu, S., Wu, Y., Ju, R., Wang, H., Liu, Y., … Xu, Q. (2015). Spinal cord injury repair by implantation of structured hyaluronic acid scaffold with PLGA microspheres in the rat. Cell and Tissue Research, 364(1), 17-28. doi:10.1007/s00441-015-2298-1Wilson, J. R., & Fehlings, M. G. (2011). Emerging Approaches to the Surgical Management of Acute Traumatic Spinal Cord Injury. Neurotherapeutics, 8(2), 187-194. doi:10.1007/s13311-011-0027-3Xie, J., Liu, W., MacEwan, M. R., Bridgman, P. C., & Xia, Y. (2014). Neurite Outgrowth on Electrospun Nanofibers with Uniaxial Alignment: The Effects of Fiber Density, Surface Coating, and Supporting Substrate. ACS Nano, 8(2), 1878-1885. doi:10.1021/nn406363
    corecore