2,211 research outputs found

    Magnetic Response of Magnetospirillum Gryphiswaldense

    Get PDF
    In this study we modelled and measured the U-turn trajectories of individual magnetotactic bacteria under the application of rotating magnetic fields, ranging in ampitude from 1 to 12 mT. The model is based on the balance between rotational drag and magnetic torque. For accurate verification of this model, bacteria were observed inside 5 m tall microfluidic channels, so that they remained in focus during the entire trajectory. From the analysis of hundreds of trajectories and accurate measurements of bacteria and magnetosome chain dimensions, we confirmed that the model is correct within measurement error. The resulting average rate of rotation of Magnetospirillum Gryphiswaldense is 0.74 +- 0.03 rad/mTs.Comment: 17 pages, 12 figure

    Two-point density correlations of quasicondensates in free expansion

    Full text link
    We measure the two-point density correlation function of freely expanding quasicondensates in the weakly interacting quasi-one-dimensional (1D) regime. While initially suppressed in the trap, density fluctuations emerge gradually during expansion as a result of initial phase fluctuations present in the trapped quasicondensate. Asymptotically, they are governed by the thermal coherence length of the system. Our measurements take place in an intermediate regime where density correlations are related to near-field diffraction effects and anomalous correlations play an important role. Comparison with a recent theoretical approach described by Imambekov et al. yields good agreement with our experimental results and shows that density correlations can be used for thermometry of quasicondensates.Comment: 4 pages, 4 figures, minor change

    Global turbulence simulations of the tokamak edge region with GRILLIX

    Full text link
    Turbulent dynamics in the scrape-off layer (SOL) of magnetic fusion devices is intermittent with large fluctuations in density and pressure. Therefore, a model is required that allows perturbations of similar or even larger magnitude to the time-averaged background value. The fluid-turbulence code GRILLIX is extended to such a global model, which consistently accounts for large variation in plasma parameters. Derived from the drift reduced Braginskii equations, the new GRILLIX model includes electromagnetic and electron-thermal dynamics, retains global parametric dependencies and the Boussinesq approximation is not applied. The penalisation technique is combined with the flux-coordinate independent (FCI) approach [F. Hariri and M. Ottaviani, Comput.Phys.Commun. 184:2419, (2013); A. Stegmeir et al., Comput.Phys.Commun. 198:139, (2016)], which allows to study realistic diverted geometries with X-point(s) and general boundary contours. We characterise results from turbulence simulations and investigate the effect of geometry by comparing simulations in circular geometry with toroidal limiter against realistic diverted geometry at otherwise comparable parameters. Turbulence is found to be intermittent with relative fluctuation levels of up to 40% showing that a global description is indeed important. At the same time via direct comparison, we find that the Boussinesq approximation has only a small quantitative impact in a turbulent environment. In comparison to circular geometry the fluctuations are reduced in diverted geometry, which is related to a different zonal flow structure. Moreover, the fluctuation level has a more complex spatial distribution in diverted geometry. Due to local magnetic shear, which differs fundamentally in circular and diverted geometry, turbulent structures become strongly distorted in the perpendicular direction and are eventually damped away towards the X-point

    Two-point phase correlations of a one-dimensional bosonic Josephson junction

    Full text link
    We realize a one-dimensional Josephson junction using quantum degenerate Bose gases in a tunable double well potential on an atom chip. Matter wave interferometry gives direct access to the relative phase field, which reflects the interplay of thermally driven fluctuations and phase locking due to tunneling. The thermal equilibrium state is characterized by probing the full statistical distribution function of the two-point phase correlation. Comparison to a stochastic model allows to measure the coupling strength and temperature and hence a full characterization of the system

    Single-particle-sensitive imaging of freely propagating ultracold atoms

    Full text link
    We present a novel imaging system for ultracold quantum gases in expansion. After release from a confining potential, atoms fall through a sheet of resonant excitation laser light and the emitted fluorescence photons are imaged onto an amplified CCD camera using a high numerical aperture optical system. The imaging system reaches an extraordinary dynamic range, not attainable with conventional absorption imaging. We demonstrate single-atom detection for dilute atomic clouds with high efficiency where at the same time dense Bose-Einstein condensates can be imaged without saturation or distortion. The spatial resolution can reach the sampling limit as given by the 8 \mu m pixel size in object space. Pulsed operation of the detector allows for slice images, a first step toward a 3D tomography of the measured object. The scheme can easily be implemented for any atomic species and all optical components are situated outside the vacuum system. As a first application we perform thermometry on rubidium Bose-Einstein condensates created on an atom chip.Comment: 24 pages, 10 figures. v2: as publishe

    Construction and Test of MDT Chambers for the ATLAS Muon Spectrometer

    Full text link
    The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the AT- LAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of pressurized drift tubes on either side of a space frame carrying an optical monitoring system to correct for deformations. The full-scale prototype of a large MDT chamber has been constructed with methods suitable for large-scale production. X-ray measurements at CERN showed a positioning accuracy of the sense wires in the chamber of better than the required 20 ?microns (rms). The performance of the chamber was studied in a muon beam at CERN. Chamber production for ATLAS now has started

    The I-mode confinement regime at ASDEX Upgrade: global propert ies and characterization of strongly intermittent density fluctuations

    Get PDF
    Properties of the I­mode confinement regime on the ASDEX Upgrade tokamak are summarized. A weak dependence of the power threshold for the L­I transition on the toroidal magnetic field strength is found. During improved confinement, the edge radial electric field well deepens. Stability calculations show that the I­mode pedestal is peeling­ballooning stable. Turbulence investigations reveal strongly intermittent density fluctuations linked to the weakly coherent mode in the confined plasma, which become stronger as the confinement quality increases. Across all investigated structure sizes ( ≈ ⊄ k 5 – 12 cm − 1 , with ⊄ k the perpendicular wavenumber of turbulent density fluctuations), the intermittent turbulence bursts are observed. Comparison with bolometry data shows that they move poloidally toward the X­point and finally end up in the divertor. This might be indicative that they play a role in inhibiting the density profile growth, such that no pedestal is formed in the edge density profile.European Union (EUROfusion 633053)European Union (EUROfusion AWP15­ENR­09/IPP­02

    Stochastic optimization of a cold atom experiment using a genetic algorithm

    Full text link
    We employ an evolutionary algorithm to automatically optimize different stages of a cold atom experiment without human intervention. This approach closes the loop between computer based experimental control systems and automatic real time analysis and can be applied to a wide range of experimental situations. The genetic algorithm quickly and reliably converges to the most performing parameter set independent of the starting population. Especially in many-dimensional or connected parameter spaces the automatic optimization outperforms a manual search.Comment: 4 pages, 3 figure

    Planar manipulation of magneto-tactic bacteria using unidirectional magnetic fields

    Get PDF
    We show for the first time that an alternating unidirectional magnetic field generated by a magnetic erase head allows planar manipulation of magneto-tactic bacteria (MTB), and is not restricted to parallel directions only. We used squared-shaped magnetic fields of approximately 4 mT while sweeping from 0.25 to 10 Hz, and found that at frequencies of over 3 Hz the mean orthogonal velocity becomes constant. The erase head offers a significant reduction in size and complexity over conventional manipulators

    Construction and Test of the Precision Drift Chambers for the ATLAS Muon Spectrometer

    Full text link
    The Monitored Drift Tube (MDT) chambers for the muon spectrometer of the ATLAS detector at the Large Hadron Collider (LHC) consist of 3-4 layers of pressurised drift tubes on either side of a space frame carrying an optical deformation monitoring system. The chambers have to provide a track position resolution of 40 microns with a single-tube resolution of at least 80 microns and a sense wire positioning accu- racy of 20 ?microns (rms). The feasibility was demonstrated with the full-scale prototype of one of the largest MDT chambers with 432 drift tubes of 3.8 m length. For the ATLAS muon spectrometer, 88 chambers of this type have to be built. The first chamber has been completed with a wire positioning accuracy of 14 microns (rms)
    • 

    corecore