6 research outputs found

    Reducing persecution is more effective for restoring large carnivores than restoring their prey

    Get PDF
    We gratefully acknowledge funding by the Federal State of Berlin, Germany (Elsa Neumann Scholarship to BB), and the German Research Foundation (GH 149/1-1 and ZU 361/1-1). We further thank all participants of the workshop on the revi- sion of the Strategy for Leopard Conservation in the Caucasus in Tbilisi, Georgia in 2017. We are grateful to J. Buchner, A. Heidelberg, V.C. Radeloff, and H. Yin for fruitful discussions, and F. Poetzschner for help with preparing data. Additionally, we thank two anonymous reviewers for their constructive comments.Peer reviewedPublisher PD

    The Human Genome Puzzle – the Role of Copy Number Variation in Somatic Mosaicism

    Get PDF
    The discovery of copy number variations (CNV) in the human genome opened new perspectives in the study of the genetic causes of inherited disorders and the etiology of common diseases. Differently patterned instances of somatic mosaicism in CNV regions have been shown to be present in monozygotic twins and throughout different tissues within an individual. A single-cell-level investigation of CNV in different human cell types led us to uncover mitotically derived genomic mosaicism, which is stable in different cell types of one individual. A unique study of immortalized B-lymphoblastoid cell lines obtained with 20 year interval from the same two subjects shows that mitotic changes in CNV regions may happen early during embryonic development and seem to occur only once, as levels of mosaicism remained stable. This finding has the potential to change our concept of dynamic human genome variation. We propose that further genomic studies should focus on the single-cell level, to understand better the etiology and physiology of aging and diseases mediated by somatic variations

    Identifying priority areas for restoring mountain ungulates in the Caucasus ecoregion

    No full text
    Mountain ungulates around the world have been decimated to small, fragmented populations. Restoring these species often is limited by inadequate information on where suitable habitat is found, and which restoration measures would help to increase and link existing populations. We developed an approach to spatially target threat-specific restoration actions and demonstrate it for bezoar goats (Capra aegagrus) in the Caucasus. Using a large occurrence dataset, we identified suitable habitat patches and evaluate them in terms of connectivity, protection status, and competition with other mountain ungulates. We found extant bezoar goat populations to be highly isolated, yet with widespread areas of suitable, unoccupied habitat between them. Many unoccupied habitat patches were well-connected to extant populations, were at least partly protected, and have low potential for competition with other Capra species. This signals substantial pressure on bezoar goats, likely due to poaching, which currently prevents natural recolonization. Our study shows how restoration planning is possible in the face of multiple threats and scarce data. For bezoar goats in the Caucasus, we pinpoint priority patches for specific restoration measures, including reintroductions and anti-poaching action. We highlight that many patches would benefit from multiple interventions and that transboundary restoration planning is needed, a situation likely similar for many mountain ungulates around the world.Peer Reviewe

    dup(19)(q12q13.2): Array-based Genotype-Phenotype Correlation of a New Possibly Obesity-related Syndrome.

    No full text
    Small supernumerary marker chromosomes (sSMCs) derived from the near-centromeric area of chromosome 2 are very rare. In addition, duplications of the 2p11.2-->q11.2 region have displayed considerable variability between patients harboring and lacking clinical findings. Moreover, constitutional duplication of the 19q12-->q13.2 region has previously only been described in two cases and was associated with delay of developmental milestones, corpus callosum anomalies, and obesity. Herein, we present a genotype-phenotype correlation in a patient harboring two sSMCs derived from chromosomes 2 and 14 or 22, respectively. The DNA was studied using G-banding, fluorescence in situ hybridization techniques, and array-based comparative genomic hybridization. A 48,XX,+der(2)del(2)(p11)del(2)(q11.2),+der(14)t(14;19)(q11;q12)del(19)(q13.31) or 48,XX,+der(2)del(2)(p11)del(2)(q11.2),+der(22)t(22;19)(q11;q12)del(19)(q13.31) was detected in the patient. The sSMC 14;19 or 22;19, with its centromere originating from either chromosome 14 or 22, encompassed a 13.56 megabase (Mb) 19q derived region, harboring 263 genes, and the sSMC 2 a 2.71 Mb region including 29 genes. The patient had symptoms including a ventral septal defect, bilateral grade IV urinary reflux, corpus callosum agenesis, microphthalmia, and obesity. The 19q segment contained the genes AKT2, CEACAM1, CEBPA, LIPE, and TGFB1 which are involved in adipose tissue homeostasis and insulin resistance, and could potentially contribute to the obese phenotype observed. Array-based genetic characterization and long-term clinical evaluation with attention toward weight gain in patients with chromosome 19q duplications might in the future lead to the description of a obesity-associated genetic syndrome, something that could have implications in management and treatment of patients carrying a dup(19)(q12q13.2). Whether the der(2)(p11q11.2) contributes to the phenotype remains inconclusive
    corecore