2 research outputs found

    Development of mobile laboratory for viral hemorrhagic fever detection in Africa

    Get PDF
    Background In order to enable local response to viral haemorrhagic fever outbreaks a mobile laboratory transportable on commercial flights was developed. Methodology The development progressed from use of mobile real time RT-PCR to mobile Recombinase Polymerase Amplification (RT-RPA). The various stages of the mobile laboratory development are described. Results A brief overview of its deployments, which culminated in the first on site detection of Ebola virus disease (EVD) in March 2014 and a successful use in a campaign to roll back EVD cases in Conakry in the West-Africa Ebola virus outbreak are described. Conclusion The developed mobile laboratory successfully enabled local teams to perform rapid viral haemorrhagic fever disgnostics

    Unravelling the determinants of human health in French Polynesia: the MATAEA project

    No full text
    BackgroundFrench Polynesia is a French overseas collectivity in the Southeast Pacific, comprising 75 inhabited islands across five archipelagoes. The human settlement of the region corresponds to the last massive migration of humans to empty territories, but its timeline is still debated. Despite their recent population history and geographical isolation, inhabitants of French Polynesia experience health issues similar to those of continental countries. Modern lifestyles and increased longevity have led to a rise in non-communicable diseases (NCDs) such as obesity, diabetes, hypertension, and cardiovascular diseases. Likewise, international trade and people mobility have caused the emergence of communicable diseases (CDs) including mosquito-borne and respiratory diseases. Additionally, chronic pathologies including acute rheumatic fever, liver diseases, and ciguatera, are highly prevalent in French Polynesia. However, data on such diseases are scarce and not representative of the geographic fragmentation of the population. ObjectivesThe MATAEA project aims to estimate the prevalence of several NCDs and CDs in the population of the five archipelagoes, and identify associated risk factors. Moreover, genetic analyses will contribute to determinate the sequence and timings of the peopling history of French Polynesia, and identify causal links between past genetic adaptation to island environments, and present-day susceptibility to certain diseases. MethodsThis cross-sectional survey is based on the random selection of 2,100 adults aged 18-69 years and residing on 18 islands from the five archipelagoes. Each participant answered a questionnaire on a wide range of topics (including demographic characteristics, lifestyle habits and medical history), underwent physical measurements (height, weight, waist circumference, arterial pressure, and skin pigmentation), and provided biological samples (blood, saliva, and stool) for biological, genetic and microbiological analyses. ConclusionFor the first time in French Polynesia, the MATAEA project allows to collect a wide range of data to explore the existence of indicators and/or risk factors for multiple pathologies of public health concern. The results will help health authorities to adapt actions and preventive measures aimed at reducing the incidence of NCDs and CDs. Moreover, the new genomic data generated in this study, combined with anthropological data, will increase our understanding of the peopling history of French Polynesia
    corecore