15 research outputs found

    The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions

    No full text
    In their natural environment, plants are part of a rich ecosystem including numerous and diverse microorganisms in the soil. It has been long recognized that some of these microbes, such as mycorrhizal fungi or nitrogen fixing symbiotic bacteria, play important roles in plant performance by improving mineral nutrition. However, the full range of microbes associated with plants and their potential to replace synthetic agricultural inputs has only recently started to be uncovered. In the last few years, a great progress has been made in the knowledge on composition of rhizospheric microbiomes and their dynamics. There is clear evidence that plants shape microbiome structures, most probably by root exudates, and also that bacteria have developed various adaptations to thrive in the rhizospheric niche. The mechanisms of these interactions and the processes driving the alterations in microbiomes are, however, largely unknown. In this review, we focus on the interaction of plants and root associated bacteria enhancing plant mineral nutrition, summarizing the current knowledge in several research fields that can converge to improve our understanding of the molecular mechanisms underpinning this phenomenon

    Metabolic variability of seed material from diverse sugar beet (Beta vulgaris L.) genotypes and of different germination capacities

    No full text
    New trends in crop breeding include analytical approaches to identify metabolic fingerprints that can be used for associations to the genetic background. The biochemical phenotype, as a result of plant endogenous factors and interaction with the environment, has the potential to increase the accuracy of forecasting regarding agronomical quality factors. In this study a metabolite profile analysis by gas chromatography-mass spectrometry (GC-MS) was conducted on sets of seed material from sugar beet. One set represented high-performing varieties with a close genetic background and with a similar quality in terms of germination capacity. The second set contained seed lots from different genotypes comprising different germination capacities. By multivariate statistical analyses high variance in both sample sets was revealed. These data were further allocated to corresponding metabolite classes. It could be shown that an untargeted GC-MS approach has the power to resolve differences in the molecular phenotypes of related offspring lines. Metabolic profiles were found to correlate more to genotypic differences than to differences in the germination capacity

    Spatiotemporal Dynamics of Oligofructan Metabolism and Suggested Functions in Developing Cereal Grains

    Get PDF
    Oligofructans represent one of the most important groups of sucrose-derived water-soluble carbohydrates in the plant kingdom. In cereals, oligofructans accumulate in above ground parts of the plants (stems, leaves, seeds) and their biosynthesis leads to the formation of both types of glycosidic linkages [beta(2,1); beta(2,6)-fructans] or mixed patterns. In recent studies, tissue- and development- specific distribution patterns of the various oligofructan types in cereal grains have been shown, which are possibly related to the different phases of grain development, such as cellular differentiation of grain tissues and storage product accumulation. Here, we summarize the current knowledge about oligofructan biosynthesis and accumulation kinetics in cereal grains. We focus on the spatiotemporal dynamics and regulation of oligofructan biosynthesis and accumulation in developing barley grains (deduced from a combination of metabolite, transcript and proteome analyses). Finally, putative physiological functions of oligofructans in developing grains are discussed

    Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis

    No full text
    Substantial formation of reactive oxygen species (ROS) is inevitable in aerobic life forms. Due to their extremely high reactivity and short lifetime, hydroxyl radicals are a special case, because cells have not developed enzymes to detoxify these most dangerous ROS. Thus, scavenging of hydroxyl radicals may only occur by accumulation of higher levels of simple organic compounds. Previous studies have demonstrated that plant-derived sugars show hydroxyl radical scavenging capabilities during Fenton reactions with Fe(2+) and hydrogen peroxide in vitro, leading to formation of less detrimental sugar radicals that may be subject of regeneration to non-radical carbohydrates in vivo. Here, we provide further evidence for the occurrence of such radical reactions with sugars in planta, by following the fate of sucralose, an artificial analog of sucrose, in Arabidopsis tissues. The expected sucralose recombination and degradation products were detected in both normal and stressed plant tissues. Oxidation products of endogenous sugars were also assessed in planta for Arabidopsis and barley, and were shown to increase in abundance relative to the non-oxidized precursor during oxidative stress conditions. We concluded that such non-enzymatic reactions with hydroxyl radicals form an integral part of plant antioxidant mechanisms contributing to cellular ROS homeostasis, and may be more important than generally assumed. This is discussed in relation to the recently proposed roles for Fe(2+) and hydrogen peroxide in processes leading to the origin of metabolism and the origin of life.status: publishe

    Spatially resolved analysis of small molecules by matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI)

    No full text
    10 Pags., 6 Figs., 1 Tabl.Matrix-assisted laser desorption/ionization mass spectrometric imaging (MALDI-MSI) of tissues provides the means to analyse the spatial distributions of small molecules and proteins within tissues. This imaging technique is commonplace in medicinal and pharmaceutical research, but its application in plant science is very recent. Broader introduction requires specific adaptations for plant tissues. Sample preparation is of paramount importance in order to obtain high-quality spectra providing sufficient spatial resolution for compounds. Optimization is required for sectioning, choice of matrix and means of matrix deposition. Here, we present our current protocols for the detection of small molecules in cryodissected immature barley (Hordeum vulgare) grains and tobacco (Nicotiana tabacum) roots. Examples of MALDI-MSI measurements are provided, and the level of reproducibility across biological replicates is addressed. Furthermore, our approaches for the validation of distribution patterns and for the identification of molecules are described. Finally, we discuss how MALDI-MSI can contribute to applied plant research.This research was funded by the German Research Foundation (DFG; MA 4814/1-1) and by the Spanish Ministry of Science and Innovation (AGL2010-16515). Financial support from the EU (COST Action FA0603) is gratefully acknowledged. The authors have declared no conflict of interest.Peer reviewe

    Comparison of Targeted (HPLC) and Nontargeted (GC-MS and NMR) Approaches for the Detection of Undeclared Addition of Protein Hydrolysates in Turkey Breast Muscle

    No full text
    The adulteration of fresh turkey meat by the undeclared addition of protein hydrolysates is of interest for fraudsters due to the increase of the economic gain by substituting meat with low cost ingredients. The aim of this study was to compare the suitability of three different analytical techniques such as GC-MS and 1H-NMR with HPLC-UV/VIS as a targeted method, for the detection of with protein hydrolysates adulterated turkey meat. For this, turkey breast muscles were treated with different plant- (e.g., wheat) and animal-based (e.g., gelatin, casein) protein hydrolysates with different hydrolyzation degrees (15–53%: partial; 100%: total), which were produced by enzymatic and acidic hydrolysis. A water- and a nontreated sample (REF) served as controls. The data analyses revealed that the hydrolysate-treated samples had significantly higher levels of amino acids (e.g., leucine, phenylalanine, lysine) compared with REF observed with all three techniques concordantly. Furthermore, the nontargeted metabolic profiling (GC-MS and NMR) showed that sugars (glucose, maltose) and/or by-products (build and released during acidic hydrolyses, e.g., levulinic acid) could be used for the differentiation between control and hydrolysates (type, degrees). The combination of amino acid profiling and additional compounds gives stronger evidence for the detection and classification of adulteration in turkey breast meat

    Spatio-temporal dynamics of fructan metabolism in developing barley grains

    No full text
    Barley (Hordeum vulgare) grain development follows a series of defined morphological and physiological stages and depends on the supply of assimilates (mainly sucrose) from the mother plant. Here, spatio-temporal patterns of sugar distributions were investigated by mass spectrometric imaging, targeted metabolite analyses, and transcript profi ling of microdissected grain tissues. Distinct spatio-temporal sugar balances were observed, which may relate to differentiation and grain filling processes. Notably, various types of oligofructans showed specific distribution patterns. Levan- and graminan-type oligofructans were synthesized in the cellularized endosperm prior to the commencement of starch biosynthesis, while during the storage phase, inulin-type oligofructans accumulated to a high concentration in and around the nascent endosperm cavity. In the shrunken endosperm mutant seg8 , with a decreased sucrose flux toward the endosperm, fructan accumulation was impaired. The tight partitioning of oligofructan biosynthesis hints at distinct functions of the various fructan types in the young endosperm prior to starch accumulation and in the endosperm transfer cells that accomplish the assimilate supply toward the endosperm at the storage phase.status: publishe

    Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains

    No full text
    Sucrose transport and partitioning are crucial for seed filling. While many plasma-membrane-localised sucrose transporters (SUT1 family members) have been analysed in seeds, the functions of vacuolar SUT2 members are still obscure. In barley grains, expression of HvSUT1 and HvSUT2 overlap temporally and spatially, suggesting concerted functions to regulate sucrose homeostasis. Using HvSUT2-RNAi plants, we found that grains were also deficient in HvSUT1 expression and seemingly sucrose-limited during mid-to-late grain filling. Transgenic endosperms accumulated less starch and dry weight, although overall sucrose and hexose contents were higher. Comprehensive transcript and metabolite profiling revealed that genes related to glycolysis, the tricarboxylic acid cycle, starch and amino acid synthesis, grain maturation, and abscisic acid signalling were down-regulated together with most glycolytic intermediates and amino acids. Sucrose was increased along the sucrose delivery route in the nucellar projection, the endosperm transfer cells, and the starchy endosperm, indicating that suppressed transporter activity diminished sucrose efflux from vacuoles, which generated sugar deficiency in the cytoplasm. Thus, endosperm vacuoles may buffer sucrose concentrations to regulate homeostasis at grain filling. Transcriptional changes revealed that limited endosperm sucrose initiated sugar starvation responses, such as sugar recycling from starch, hemicelluloses and celluloses together with vacuolar protein degradation, thereby supporting formation of nucleotide sugars. Barley endosperm cells can thus suppress certain pathways to retrieve resources to maintain essential cell functions
    corecore