17 research outputs found

    Three-dimensional printers applied for the production of beam blocks in total body irradiation treatment

    Get PDF
    Total body irradiation in extended source surface distance is a common treatment technique before hematopoietic stem cell transplant. The lungs are organs at risk, which often are treated with a lower dose than the whole body. This can be achieved by the application of blocks. 3D printers are a modern tool to be used in the production process of these blocks. We demonstrate the applicability of a specific printer and printing material, describe the process, and evaluate the accuracy of the product. The blocks and apertures were found to be applicable in clinical routine

    Simultaneous integrated boost (SIB) radiation therapy of right sided breast cancer with and without flattening filter - A treatment planning study

    Get PDF
    Background: The aim of the study was to compare the two irradiation modes with (FF) and without flattening filter (FFF) for three different treatment techniques for simultaneous integrated boost radiation therapy of patients with right sided breast cancer. Methods: An Elekta Synergy linac with Agility collimating device is used to simulate the treatment of 10 patients. Six plans were generated in Monaco 5.0 for each patient treating the whole breast and a simultaneous integrated boost (SIB) volume: intensity modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT) and a tangential arc VMAT (tVMAT), each with and without flattening filter. Plan quality was assessed considering target coverage, sparing of the contralateral breast, the lungs, the heart and the normal tissue. All plans were verified by a 2D-ionisation-chamber-array and delivery times were measured and compared. The Wilcoxon test was used for statistical analysis with a significance level of 0.05. Results: Significantly best target coverage and homogeneity was achieved using VMAT FFF with V95% = (98.7 +/- 0.8) % and HI = (8.2 +/- 0.9) % for the SIB and V95% = (98.3 +/- 0.7) % for the PTV, whereas tVMAT showed significantly lowest doses to the contralateral organs at risk with a D-mean of (0.7 +/- 0.1) Gy for the contralateral lung, (1.0 +/- 0.2) Gy for the contralateral breast and (1.4 +/- 0.2) Gy for the heart. All plans passed the gamma evaluation with a mean passing rate of (99.2 +/- 0.8) %. Delivery times were significantly reduced for VMAT and tVMAT but increased for IMRT, when FFF was used. Lowest delivery times were observed for tVMAT FFF with (1:20 +/- 0:07) min. Conclusion: Balancing target coverage, OAR sparing and delivery time, VMAT FFF and tVMAT FFF are considered the preferable of the investigated treatment options in simultaneous integrated boost irradiation of right sided breast cancer for the combination of an Elekta Synergy linac with Agility and the treatment planning system Monaco 5.0

    Total Body Irradiation - an Attachment Free Sweeping Beam Technique

    Get PDF
    Introduction: A sweeping beam technique for total body irradiation in standard treatment rooms and for standard linear accelerators (linacs) is introduced, which does not require any accessory attached to the linac. Lung shielding is facilitated to reduce the risk of pulmonary toxicity. Additionally, the applicability of a commercial radiotherapy planning system (RTPS) is examined. Material and Methods: The patient is positioned on a low couch on the floor, the longitudinal axis of the body in the rotational plane of the linac. Eight arc fields and five additional fixed beams are applied to the patient in supine and prone position respectively. The dose distributions were measured in a solid water phantom and in an Alderson phantom. Diode detectors were calibrated for in-vivo dosimetry. The RTPS Oncentra was employed for calculations of the dose distribution. Results: For the cranial 120 cm the longitudinal dose profile in a slab phantom measured with ionization chamber varies between 94 and 107 % of the prescription dose. These values were confirmed by film measurements and RTPS calculations. The transmittance of the lung shields has been determined as a function of the thickness of the absorber material. Measurements in an Alderson phantom and in-vivo dosimetry of the first patients match the calculated dose. Discussion and conclusion: A treatment technique with clinically good dose distributions has been introduced, which can be applied with each standard linac and in standard treatment rooms. Dose calculations were performed with a commercial RTPS and should enable individual dose optimization

    Genome-Wide Association Study of the Modified Stumvoll Insulin Sensitivity Index Identifies BCL2 and FAM19A2 as Novel Insulin Sensitivity Loci

    Get PDF
    Genome-wide association studies (GWAS) have found few common variants that influence fasting measures of insulin sensitivity. We hypothesized that a GWAS of an integrated assessment of fasting and dynamic measures of insulin sensitivity would detect novel common variants. We performed a GWAS of the modified Stumvoll Insulin Sensitivity Index (ISI) within the Meta-Analyses of Glucose and Insulin-Related Traits Consortium. Discovery for genetic association was performed in 16,753 individuals, and replication was attempted for the 23 most significant novel loci in 13,354 independent individuals. Association with ISI was tested in models adjusted for age, sex, and BMI and in a model analyzing the combined influence of the genotype effect adjusted for BMI and the interaction effect between the genotype and BMI on ISI (model 3). In model 3, three variants reached genome-wide significance: Rs13422522 (NYAP2; P = 8.87 Ă— 10-11), rs12454712 (BCL2; P = 2.7 Ă— 10-8), and rs10506418 (FAM19A2; P = 1.9 Ă— 10-8). The association at NYAP2 was eliminated by conditioning on the known IRS1 insulin sensitivity locus; the BCL2 and FAM19A2 associations were independent of known cardiometabolic loci. In conclusion, we identified two novel loci and replicated known variants associated with insulin sensitivity. Further studies are needed to clarify the causal variant and function at the BCL2 and FAM19A2 loci

    Production of photon blocks and electron apertures for TBI treatment using a 3D printer

    Get PDF
    Introduction Due to the increasing application of intensity modulating techniques there is nearly no need for the production of photon blocks. However, for special applications they are still useful. Lung shields to avoid pneumonitis after total body irradiation (TBI) are rather common. We demonstrate the production of photon blocks and electron apertures for TBI using a commercial 3D printer. Materials & Methods The configuration of the blocks is performed using the treatment planning system Oncentra. The RT plan DICOM file is exported to an in-house developed Matlab® program. This generates a 3D-model of the blocks under consideration of geometric parameters. The molds for electron aperture cut-outs are calculated as complementary shapes of the photon blocks. The surface file from the Matlab program is imported in the PrusaSlicer software which creates a gcode file for the printer type Prusa i3MK3S. We chose standard printing materials as PLA and PETG. The moulds were filled with MCP96. Results The geometric shape of the molds for blocks and apertures corresponds precisely to the requirements. Both materials PLA and PETG showed sufficient heat resistance when filled with molten MCP96 without visible deformation. The required height of photon blocks is achieved by printing the mold in the specified height. Discussion and Conclusion The material of the actual medical product – the blocks and apertures – is unchanged compared to the former production process with polystyrene foam (PS) cutting devices. The blocks can be handled in the accustomed manner. However, the 3D printing process takes more time than cutting a mold of PS foam. This must be considered in the treatment preparation

    Iterative metal artifact reduction improves dose calculation accuracy

    No full text
    Purpose Metallic dental implants cause severe streaking artifacts in computed tomography (CT) data, which affect the accuracy of dose calculations in radiation therapy. The aim of this study was to investigate the benefit of the metal artifact reduction algorithm iterative metal artifact reduction (iMAR) in terms of correct representation of Hounsfield units (HU) and dose calculation accuracy. Materials and methods Heterogeneous phantoms consisting of different types of tissue equivalent material surrounding metallic dental implants were designed. Artifact-containing CT data of the phantoms were corrected using iMAR. Corrected and uncorrected CT data were compared to synthetic CT data to evaluate accuracy of HU reproduction. Intensity-modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were calculated in Oncentra v4.3 on corrected and uncorrected CT data and compared to Gafchromic T EBT3 films to assess accuracy of dose calculation. Results The use of iMAR increased the accuracy of HU reproduction. The average deviation of HU decreased from 1006 HU to 408 HU in areas including metal and from 283 HU to 33 HU in tissue areas excluding metal. Dose calculation accuracy could be significantly improved for all phantoms and plans: The mean passing rate for gamma evaluation with 3 % dose tolerance and 3 mm distance to agreement increased from 90.6 % to 96.2 % if artifacts were corrected by iMAR. Conclusion The application of iMAR allows metal artifacts to be removed to a great extent which leads to a significant increase in dose calculation accuracy

    Second Cancer Risk after simultaneous integrated boost radiation therapy of right sided breast cancer with and without flattening filter

    No full text
    Background The aim of this study was to investigate if the flattening filter free mode (FFF) of a linear accelerator reduces the excess absolute risk (EAR) for second cancer as compared to the flat beam mode (FF) in simultaneous integrated boost (SIB) radiation therapy of right-sided breast cancer. Patients and methods Six plans were generated treating the whole breast to 50.4 Gy and a SIB volume to 63 Gy on CT data of 10 patients: intensity-modulated radiation therapy (IMRT), volumetric modulated arc therapy (VMAT), and a tangential arc VMAT (tVMAT), each with flattening filter and without. The EAR was calculated for the contralateral breast and the lungs from dose-volume histograms (DVH) based on the linear-exponential, the plateau, and the full mechanistic dose-response model. Peripheral low-dose measurements were performed to compare the EAR in more distant regions as the thyroids and the uterus. Results FFF reduces the EAR significantly in the contralateral and peripheral organs for tVMAT and in the peripheral organs for VMAT. No reduction was found for IMRT. The lowest EAR for the contralateral breast and lung was achieved with tVMAT FFF, reducing the EAR by 25 % and 29 % as compared to tVMAT FF, and by 44 % to 58 % as compared to VMAT and IMRT in both irradiation modes. tVMAT FFF showed also the lowest peripheral dose corresponding to the lowest EAR in the thyroids and the uterus. Conclusion The use of FFF mode allows reducing the EAR significantly when tVMAT is used as the treatment technique. When second cancer risk is a major concern, tVMAT FFF is considered the preferred treatment option in SIB irradiation of right-sided breast cancer
    corecore