29 research outputs found

    Wind-driven freshwater buildup and release in the Beaufort Gyre constrained by mesoscale eddies

    Get PDF
    Author Posting. © American Geophysical Union, 2016. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 43 (2016): 273–282, doi:10.1002/2015GL065957.Recently, the Beaufort Gyre has accumulated over 20,000 km3 of freshwater in response to strong anticyclonic atmospheric winds that have prevailed over the gyre for almost two decades. Here we explore key physical processes affecting the accumulation and release of freshwater within an idealized eddy-resolving model of the Beaufort Gyre. We demonstrate that a realistic halocline can be achieved when its deepening tendency due to Ekman pumping is counteracted by the cumulative action of mesoscale eddies. Based on this balance, we derive analytical scalings for the depth of the halocline and its spin-up time scale and emphasize their explicit dependence on eddy dynamics. Our study further suggests that the Beaufort Gyre is currently in a state of high sensitivity to atmospheric winds. However, an intensification of surface stress would inevitably lead to a saturation of the freshwater content—a constraint inherently set by the intricacies of the mesoscale eddy dynamics.Yellowstone Grant Number: ark:/85065/d7wd3xhc; Howland Postdoctoral Program Fund; NSF Grant Numbers: PLR-1415489, OCE-1232389; NSF OPP Grant Numbers: PLR-1313614, PLR-12037202016-07-0

    Entrainment and mixed layer dynamics of a surface-stress-driven stratiified fluid

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Cambridge University Press for personal use, not for redistribution. The definitive version was published in Journal of Fluid Mechanics 765 (2015): 653-667, doi:10.1017/jfm.2015.5.We consider experimentally an initially quiescent and linearly stratified fluid with buoyancy frequency NQ in a cylinder subject to surface-stress forcing from a disc of radius R spinning at a constant angular velocity Ω. We observe the growth of the disc-adjacent turbulent mixed layer bounded by a sharp primary interface with a constant characteristic thickness lI. To a good approximation the depth of the forced mixed layer scales as hF/R∼(NQ/Ω)−2/3(Ωt)2/9. Generalising the previous arguments and observations of Shravat, Cenedese & Caulfield. (2012), we show that such a deepening rate is consistent with three central assumptions that allow us to develop a phenomenological energy balance model for the entrainment dynamics. First, the total kinetic energy of the deepening mixed layer EKF∝hFu2F, where uF is a characteristic velocity scale of the turbulent motions within the forced layer, is essentially independent of time and the buoyancy frequency NQ. Second, the scaled entrainment parameter E=h˙F/uF depends only on the local interfacial Richardson number RiI=(N2QhFlI)/(2u2F). Third, the potential energy increase (due to entrainment, mixing and homogenisation throughout the deepening mixed layer) is driven by the local energy input at the interface, and hence is proportional to the third power of the characteristic velocity uF. We establish that internal consistency between these assumptions implies that the rate of increase of the potential energy (and hence the local mass flux across the primary interface) decreases with RiI. This observation suggests, as originally argued by Phillips (1972), that the mixing in the vicinity of the primary interface leads to the spontaneous appearance of secondary partially mixed layers, and we observe experimentally such secondary layers below the primary interface.Financial support from the National Science Foundation, the Office of Naval Research and Woods Hole Oceanographic Institution is gratefully acknowledged. The research activity of C.P.C. is supported by EPSRC Programme Grant EP/K034529/1 entitled `Mathematical Underpinnings of Stratified Turbulence.'2015-07-2

    A Theory of the Wind-Driven Beaufort Gyre Variability

    Get PDF
    The halocline of the Beaufort Gyre varies significantly on interannual to decadal time scales, affecting the freshwater content (FWC) of the Arctic Ocean. This study explores the role of eddies in the Ekman-driven gyre variability. Following the transformed Eulerian-mean paradigm, the authors develop a theory that links the FWC variability to the stability of the large-scale gyre, defined as the inverse of its equilibration time. The theory, verified with eddy-resolving numerical simulations, demonstrates that the gyre stability is explicitly controlled by the mesoscale eddy diffusivity. An accurate representation of the halocline dynamics requires the eddy diffusivity of 300 ± 200 m^2 s^(−1), which is lower than what is used in most low-resolution climate models. In particular, on interannual and longer time scales the eddy fluxes and the Ekman pumping provide equally important contributions to the FWC variability. However, only large-scale Ekman pumping patterns can significantly alter the FWC, with spatially localized perturbations being an order of magnitude less efficient. Lastly, the authors introduce a novel FWC tendency diagnostic—the Gyre Index—that can be conveniently calculated using observations located only along the gyre boundaries. Its strong predictive capabilities, assessed in the eddy-resolving model forced by stochastic winds, suggest that the Gyre Index would be of use in interpreting FWC evolution in observations as well as in numerical models

    Eddy memory mode of multidecadal variability in residual-mean ocean circulations with application to the Beaufort Gyre

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 47 (2017): 855-866, doi:10.1175/JPO-D-16-0194.1.Mesoscale eddies shape the Beaufort Gyre response to Ekman pumping, but their transient dynamics are poorly understood. Climate models commonly use the Gent–McWilliams (GM) parameterization, taking the eddy streamfunction to be proportional to an isopycnal slope s and an eddy diffusivity K. This local-in-time parameterization leads to exponential equilibration of currents. Here, an idealized, eddy-resolving Beaufort Gyre model is used to demonstrate that carries a finite memory of past ocean states, violating a key GM assumption. As a consequence, an equilibrating gyre follows a spiral sink trajectory implying the existence of a damped mode of variability—the eddy memory (EM) mode. The EM mode manifests during the spinup as a 15% overshoot in isopycnal slope (2000 km3 freshwater content overshoot) and cannot be explained by the GM parameterization. An improved parameterization is developed, such that is proportional to an effective isopycnal slope , carrying a finite memory γ of past slopes. Introducing eddy memory explains the model results and brings to light an oscillation with a period ≈ 50 yr, where the eddy diffusion time scale TE ~ 10 yr and γ ≈ 6 yr are diagnosed from the eddy-resolving model. The EM mode increases the Ekman-driven gyre variance by γ/TE ≈ 50% ± 15%, a fraction that stays relatively constant despite both time scales decreasing with increased mean forcing. This study suggests that the EM mode is a general property of rotating turbulent flows and highlights the need for better observational constraints on transient eddy field characteristics.GEM acknowledges the Stanback Postdoctoral Fellowship Fund at Caltech and the Howland Postdoctoral Program Fund at WHOI. MAS was supported by NSF Grants PLR-1415489 and OCE- 1232389. AFT acknowledges support from NSF OCE- 1235488

    Submesoscale Sea Ice-Ocean Interactions in Marginal Ice Zones

    Get PDF
    Signatures of ocean eddies, fronts, and filaments are commonly observed within marginal ice zones (MIZs) from satellite images of sea ice concentration, and in situ observations via ice-tethered profilers or underice gliders. However, localized and intermittent sea ice heating and advection by ocean eddies are currently not accounted for in climate models and may contribute to their biases and errors in sea ice forecasts. Here, we explore mechanical sea ice interactions with underlying submesoscale ocean turbulence. We demonstrate that the release of potential energy stored in meltwater fronts can lead to energetic submesoscale motions along MIZs with spatial scales O(10 km) and Rossby numbers O(1). In low-wind conditions, cyclonic eddies and filaments efficiently trap the sea ice and advect it over warmer surface ocean waters where it can effectively melt. The horizontal eddy diffusivity of sea ice mass and heat across the MIZ can reach O(200 m^2 s^(−1)). Submesoscale ocean variability also induces large vertical velocities (order 10 m d^(−1)) that can bring relatively warm subsurface waters into the mixed layer. The ocean-sea ice heat fluxes are localized over cyclonic eddies and filaments reaching about 100 W m^(−2). We speculate that these submesoscale-driven intermittent fluxes of heat and sea ice can contribute to the seasonal evolution of MIZs. With the continuing global warming and sea ice thickness reduction in the Arctic Ocean, submesoscale sea ice-ocean processes are expected to become increasingly prominent

    Enhanced Eddy Activity in the Beaufort Gyre in Response to Sea Ice Loss

    Get PDF
    The Beaufort Gyre freshwater content has increased since the 1990s, potentially stabilizing in recent years. The mechanisms proposed to explain the stabilization involve either mesoscale eddy activity that opposes Ekman pumping or the reduction of Ekman pumping due to reduced sea ice?ocean surface stress. However, the relative importance of these mechanisms is unclear. Here, we present observational estimates of the Beaufort Gyre mechanical energy budget and show that energy dissipation and freshwater content stabilization by eddies increased in the late-2000s. The loss of sea ice and acceleration of ocean currents after 2007 resulted in enhanced mechanical energy input but without corresponding increases in potential energy storage. To balance the energy surplus, eddy dissipation and its role in gyre stabilization must have increased after 2007. Our results imply that declining Arctic sea ice will lead to an increasingly energetic Beaufort Gyre with eddies playing a greater role in its stabilization

    Partitioning of kinetic energy in the Arctic Ocean's Beaufort Gyre

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 4806-4819, doi:10.1029/2018JC014037.Kinetic energy (KE) in the Arctic Ocean's Beaufort Gyre is dominated by the mesoscale eddy field that plays a central role in the transport of freshwater, heat, and biogeochemical tracers. Understanding Beaufort Gyre KE variability sheds light on how this freshwater reservoir responds to wind forcing and sea ice and ocean changes. The evolution and fate of mesoscale eddies relate to energy pathways in the ocean (e.g., the exchange of energy between barotropic and baroclinic modes). Mooring measurements of horizontal velocities in the Beaufort Gyre are analyzed to partition KE into barotropic and baroclinic modes and explore their evolution. We find that a significant fraction of water column KE is in the barotropic and the first two baroclinic modes. We explain this energy partitioning by quantifying the energy transfer coefficients between the vertical modes using the quasi‐geostrophic potential vorticity conservation equations with a specific background stratification observed in the Beaufort Gyre. We find that the quasi‐geostrophic vertical mode interactions uphold the persistence of KE in the first two baroclinic modes, consistent with observations. Our results explain the specific role of halocline structure on KE evolution in the gyre and suggest depressed transfer to the barotropic mode. This limits the capacity for frictional dissipation at the sea floor and suggests that energy dissipation via sea ice‐ocean drag may be prominent.National Science Foundation Division of Polar Programs Grant Number: 11076232019-01-1

    Eddies in the Western Arctic Ocean From Spaceborne SAR Observations Over Open Ocean and Marginal Ice Zones

    Get PDF
    The Western Arctic Ocean is a host to major ocean circulation systems, many of which generate eddies that can transport water masses and corresponding tracers over long distances from their formation sites. However, comprehensive observations of critical eddy characteristics are currently not available and are limited to spatially and temporally sparse in situ observations. Here we use high‐resolution spaceborne synthetic aperture radar measurements to detect eddies from their surface imprints in ice‐free sea surface roughness, and in sea ice patterns throughout marginal ice zones. We provide the first estimate of eddy characteristics extending over the seasonally ice‐free and marginal ice zone regions of the Western Arctic Ocean, including their locations, diameters, and monthly distribution. Using available synthetic aperture radar data, we identified over 4,000 open ocean eddies, as well as over 3,500 eddies in marginal ice zones from June to October in 2007, 2011, and 2016. Eddies range in size between 0.5 and 100 km and are frequently found over the shelf and near continental slopes but also present in the deep Canada Basin and over the Chukchi Plateau. We find that cyclonic eddies are twice more frequent compared to anticyclonic eddies at the surface, distinct from the dominating anticyclonic eddies observed at depth by in situ moorings and ice‐tethered profilers. Our study supports the notion that eddies are ubiquitous in the Western Arctic Ocean even in the presence of sea ice and emphasizes the need for improved ocean observations and modeling at eddy scales
    corecore