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We consider experimentally a linearly stratified fluid with buoyancy frequency N in a
cylinder subject to surface-stress forcing from a disc of radius R spinning at a constant
angular velocity Ω. We observe the growth of the disc-adjacent turbulent mixed layer
bounded by a sharp primary interface with a constant thickness lI . To a good approxi-
mation the depth of the mixed layer scales as hU/R ∼ (N/Ω)−2/3(Ωt)2/9. Generalising
the previous arguments and observations of Shravat, Cenedese & Caulfield (2012), we
show that such a deepening rate is consistent with three central assumptions that allow
us to develop a phenomenological energy balance model for the entrainment dynamics.
First, the total kinetic energy of the deepening mixed layer KU ∝ hUu

2
U , where uU is

a characteristic velocity scale of the turbulent motions within the upper layer, is essen-
tially independent of time and the buoyancy frequency N . Second, the scaled entrain-
ment parameter E = ḣU/uU , depends only on the local interfacial Richardson number
RiI = (N2hU lI)/(2u

2
U ). Third, the potential energy production is driven by the local

energy input at the interface, and hence is proportional to the third power of this char-
acteristic velocity uU . We establish that internal consistency between these assumptions
implies that the rate of increase of the potential energy decreases with RiI , suggesting
following Phillips (1972), that the mixing in the vicinity of the primary interface leads to
the spontaneous appearance of secondary partially-mixed layers which we indeed observe
experimentally below the primary interface.

1. Introduction

The interaction between shear-driven turbulence and density stratification is a key
process in a wide array of geophysically relevant flows, and the ensuing vertical mixing is
of central importance in understanding the flow of the world oceans (see Wunsch & Ferrari
2004; Ivey, Winters & Koseff 2008; Ferrari & Wunsch 2009, for reviews). The dynamics
of this interaction, in particular the interconnected energetics of turbulent dissipation,
larger scale ‘stirring’ and smaller-scale irreversible mixing, is extremely complex and
subtle. There has been a large amount of research activity attempting to parameterise
irreversible mixing in terms of larger scale bulk measures of the flow (e.g. Linden 1979;
Fernando 1991; Ivey, Winters & Koseff 2008).

Of central and ongoing interest are two inter-related questions. First, how is the kinetic
energy, injected at some relatively large scale, apportioned between irreversible mixing,
leading to an increase in the gravitational potential energy, and turbulent viscous dis-
sipation; i.e. how ‘efficient’ is the mixing? Second, can the mixing in stratified flows be
characterised by some relatively large-scale overturning process that tends to smear out
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density gradients, and hence can be considered as a diffusive process, or is it more appro-
priately characterised as a ‘scouring’ process that tends to maintain or indeed sharpen
density gradients within a flow? These two questions are inter-related, since as originally
argued by Phillips (1972), if the rate of increase of potential energy decreases with in-
creasing stratification there will be a tendency of the flow to form ‘layers’ of relatively
well-mixed fluid separated by thinner ‘interfaces’ of substantially stronger gradients.

Recent experimental studies of stratified Taylor-Couette flow, i.e. an annular stratified
flow driven by rotation of the inner cylindrical boundary (see Woods et al. (2010);
Oglethorpe, Caulfield & Woods (2013)) suggest strongly that non-diffusive ‘scouring’
entrainment processes do occur, supporting a large body of previous experimental work,
dating back at least to Turner (1968) and Kato & Phillips (1969). Quite recently,
Oglethorpe, Caulfield & Woods (2013) established in stratified Taylor-Couette flow that
the mixing does indeed vary non-monotonically with stratification, and that layers do
indeed spontaneously form in an initially linearly stratified fluid. It is clearly of interest
to build upon such studies to establish whether anything generic can be stated about
the mixing processes that occur within stratified turbulent flows, and so it is natural to
consider a range of flow geometries and forcing mechanisms.

Of specific interest, as it is perhaps more characteristic of real geophysical situations
than the Taylor-Couette situation, is mixing driven primarily by vertical shear. In this
case the driving mechanism in the velocity field is in direct opposition to the stabilising
mechanism of the static stability. A particularly appropriate experimental flow geometry,
closely related to the flow geometry originally considered by Kato & Phillips (1969), is
that of a stratified fluid in a cylindrical tank driven by a disc of radius R (close to
the radius of the cylinder) rotating at a constant angular rotation rate Ω at one of the
boundaries. Boyer et al. (1997) and Davies et al. (1995) considered two-layer and initially
linearly stratified fluid respectively driven by a disc just above the base of the cylinder,
and observed that a well-mixed layer developed in the vicinity of the disc whose depth
appeared to deepen linearly with time.

Both Boyer et al. (1997) and Davies et al. (1995) argued that the potential energy
production due to the local entrainment can be related linearly to the power supplied
at the interface by the mobilised upper layer. In turn, the power input is proportional
to the third power of some characteristic velocity u3U . They further argued that this
characteristic velocity should be constant in time uU ∝ ΩR crucially independent of the
present depth of the mixed layer hU . Therefore, the combination of these two arguments
implied that the rate of increase of potential energy was constant in time.

In the initially two-layer case, with initial densities ρU (0) and ρL > ρU (0) and initial
upper layer depth hU (0), conservation of mass implies straightforwardly that g′UhU =
g(ρL − ρU (t))/ρ0 = CM , a constant in time, where ρ0 is some reference density. Fur-
thermore, Boyer et al. (1997) showed that an appropriately defined potential energy
of the upper layer is proportional to g′Uh

2
U = CMhU , and thus that the rate of change

of potential energy was directly proportional to dhU/dt. Therefore, they predicted that
depth of the well-mixed layer should deepen linearly in time for an initially two-layer
stratification, a prediction which was supported by admittedly sparse experimental evi-
dence. On the other hand, for the initially linearly stratified case with constant buoyancy
frequency N , as we discuss in more detail in section 3, the potential energy of the upper
layer is proportional to N2h3U . Since they argued that the rate of increase with time of
this quantity should be constant, Davies et al. (1995) predicted that hU ∝ (Ωt)1/3, and
they did indeed observe a decrease in the rate of change of the depth of the upper mixed
layer, which is consistent with this argument, though once again there were relatively
few measurements of density profiles reported.
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Shravat, Cenedese & Caulfield (2012) (henceforth referred to as SCC12) considered a
similar two-layer flow to Boyer et al. (1997), focussing on the entrainment, mixing and
homogenization of an initially two-layer stratification in a cylindrical tank, driven by a
disc rotating with constant angular frequency Ω now at the upper surface of the fluid.
They observed that the depth hU (t) of the upper mixed layer did not increase linearly
with time, unlike the predictions of Boyer et al. (1997), but rather hU/R ∼ (1+CΩt)2/5,
for some empirical constant C. They showed that this scaling was consistent with a model
based on the concept that the power injected into the flow by the rotating disc could
not maintain constant characteristic velocities in the upper layer for sufficiently deep
upper layers because this would demand an ever-increasing power both to mobilise the
deepening fluid and to account for the ever-increasing viscous dissipation. Indeed, they
demonstrated that the experimentally measured rate of deepening was consistent with
the assumption that the kinetic energy KU in the upper layer, defined as

KU =
1

2

∫ hU

0

∫ 2π

0

∫ R

0

ρ|u(r, θ, z, t)|2rdrdθdz =
1

2
ρLπR

2hUu
2
U , (1.1)

tended to a constant in time, thus making it possible to relate uU to h
−1/2
U . Central to

their argument was the concept that ‘mixing’ should be considered as a two stage process.
The local ‘entrainment’ across the interface is driven by a turbulent stress due to the
mobilised upper layer, which is then followed by a ‘homogenisation’ of this entrained
fluid throughout the turbulent deepening upper mixed layer.

Using this inherently local entrainment model, they were able to construct a self-
consistent model for deepening of the mixed layer, recovering the (Ωt)2/5 scaling. This
model, which they referred to as a constant-disc-power or ‘P’ model, is still based around
the assumption that the characteristic turbulent velocity scale important for entrainment
at the interface is proportional to the characteristic velocity scale uU in the upper layer,
but crucially allows for this scale to vary (and indeed decrease) with time. Considering
the global energy budget of the well-mixed layer required for mobilisation and homogeni-
sation, they argued that a constant kinetic energy KU required a balance between power
injected by the rotating disc, the turbulent dissipation of the entire layer, and the total
power demand of both the local entrainment and the homogenisation of the fluid density
throughout the upper layer. However, the constant kinetic energy scaling only emerges
at later time, or equivalently for sufficiently deep upper layers, and so there were some
technical difficulties in being able to run experiments of sufficiently long duration.

Furthermore, and more significantly, these two-layer experiments could shed no light
on the tendency of the stratified mixing to lead to layering (or not). The conductivity
probe density measurements demonstrated that the primary interface between the well-
mixed upper layer and the largely quiescent lower layer had a characteristic thickness
scale lI ∼ O(1 cm) which did not vary measurably with time. Therefore, under the
hypothesis that KU remains constant with time, the interfacial Richardson number RiI ,
is itself a constant with time:

RiI =
g′U lI
u2U

=
g′UhU lI
hUu2U

= CRi, (1.2)

since as already noted by Boyer et al. (1997), g′UhU = CM , a constant. This constraint
unfortunately makes it impossible to determine how the entrainment local to the interface
depends on RiI – a key to determining whether secondary layer formation is to be
expected via the Phillips mechanism.

In light of these observations, in this paper we consider the different flow initial con-
dition in the same geometry as SCC12, that of an initially linearly stratified fluid as
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considered by Davies et al. (1995), so that we can address two primary objectives.
Firstly, we wish to verify if, analogously to the situation considered in SCC12, the aa-
sumption that the kinetic energy of the upper layer tends towards a constant, and hence

that uU ∝ h
−1/2
U leads to a better prediction for the evolution of the mixed layer depth

than the assumption of Davies et al. (1995) that uU ∝ ΩR. Secondly, we wish to explore
how the local entrainment varies with the interfacial stratification, and if its variation
is such that we expect layer development by the Phillips mechanism. It is important to
stress that we are interested in the bulk properties of the flow at sufficiently late time,
rather than the initial spin-up instabilities of the flow or the specific character of the flow
in the mixed layer (see Davies et al. (1995), Munro & Davies (2006) and Munro, Foster
& Davies (2010) for consideration of these flow dynamics). In particular, we are inter-
ested in layers which develop and persist at ‘late’ times below the primary interface due
to its particular mixing dynamics, rather than larger-scale, radially spreading intruding
layers as observed by Davies et al. (1995).

To consider these two issues, the rest of the paper is organised as follows. In section
2, we describe our experimental procedure and present our observational results. By
measuring large numbers of density profiles, we demonstrate that the mixed layer deepens
at a rate slower than that predicted by Davies et al. (1995), thus suggesting that the
assumption that uU ∝ ΩR is not appropriate for all times. Also we show that secondary
layering is regularly observed, strongly suggesting that the Phillips mechanism may be
occuring. In section 3, we generalise the constant-disc-power ‘P’ model presented in
SCC12 with the aim of explaining the experimental findings. We demonstrate that our
model is consistent with the observed dependence of the depth of the mixed layer on
both time and the external parameters Ω and N , and also that the rate of increase of
potential energy is a decreasing function of RiI , consistently with the observations of
robust secondary layers developing below the primary interface. Finally, in section 4, we
draw our conclusions.

2. Experiments

2.1. Experimental procedure

We have conducted a series of experiments on a stratified fluid in a cylindrical tank forced
at the surface by a rotating horizontal disc, using the same experimental equipment as
described in SCC12. We fill a cylindrical tank (30 cm height and 30 cm diameter) with
fluid of a consistent height H = 27cm. Using the conventional Oster double-bucket tech-
nique, we set an initial linear density stratification relative difference between the density
at the top of the fluid ρT and the bottom ρB of the fluid (ρB − ρT )/ρT ∈ (0.02, 0.2). We
measure vertical density profiles using a conductivity probe moving vertically downwards
with a speed of 3 mm s−1 at a sampling rate taking 100 measurements every centimetre.
The profiled depth of the fluid is 20 cm, excluding regions close to the disc and to the
bottom of the tank. We convert conductivity measurements into density using a cali-
bration based around a third degree polynomial. All fluid is at the (controlled) room
temperature of 20o ± 0.5oC. Therefore, the Schmidt number for the salt stratified water
is nearly constant Sc = ν/κ ∼ 700, where ν is the kinematic viscosity, and κ is the salt
diffusivity.

Following SCC12, we drive a horizontal disc (radius R = 12cm) in contact with the
surface of the fluid with constant angular rotation rate Ω. We keep the aspect ratio
R/H fixed for all experiments. Thus, there are two natural control parameters for the
experiments: the rotation rate Ω and the buoyancy frequency N defined by the initial
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Figure 1: A schematic of the experimental set-up showing a cylindrical tank filled with
stratified fluid, forced at the surface by a rotating disc, and measured by a traversing
conductivity probe from z = 0 (the upper surface) to z = −H (the tank base).

linear stratification

ρL(z) = ρT

(
1− N2

g
z

)
; N2 =

g(ρB − ρT )

ρTH
, (2.1)

defining vertical coordinate z increasing upwards from z = −H at the base of the tank to
z = 0 at the disc. The ratio of N and Ω define a natural global nondimensional parameter
for the ‘profile’ Richardson number RiP defined as

RiP = N2/Ω2. (2.2)

We observe that the entire column of fluid in the tank becomes well mixed over a
mixing time TM ∈ (1.2 − 72) × 103 s. As the characteristic flow speeds (and hence the
intensity of the turbulence leading to stratified mixing) depend on the disc rotation rate
Ω, it is natural to nondimensionalize time t as t̂ = Ωt. We have analysed 20 experiments,
with 0.5s−1 6 N 6 1.72s−1 and 0.72rad s−1 6 Ω 6 3.14rad s−1, resulting in 0.14 6
RiP 6 2.25 (as listed in table 1).

2.2. Qualitative observations

As discussed in more detail in SCC12, the characteristic Reynolds number Re = ΩR2/ν ∼
O(105), and so a turbulent well-mixed mobilised layer develops near the disc, with almost
homogeneous density distribution. Although there is undoubtedly a large-scale radial
flow (see Davies et al. (1995), Munro & Davies (2006), Munro, Foster & Davies (2010)
for more details), we are principally interested in the bulk later-time properties of the
deepening layer. As discussed in SCC12, there is a power demand for this deepening,
as the gravitational potential energy of the fluid increases as the layer deepens, since
entrainment and homogenisation processes effectively lift the centre of mass of the water
column by transporting dense fluid upward in the gravitational field. Furthermore, an
increasingly strong, and noticeably sharp density jump forms at the base of the mixed
layer which effectively shields the quiescent layer underneath it from penetration and
overturning by turbulent eddies.
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RiP = N2/Ω2 N Ω α A RiP = N2/Ω2 N Ω α A

0.14 0.5 1.34 0.18 1.17 0.95 1.3 1.34 0.24 0.54
0.16 0.84 2.08 0.21 1.07 1 1.7 1.7 0.225 0.51
0.2 0.5 1.13 0.2 0.98 1.05 0.98 0.95 0.24 0.56
0.3 1.72 3.14 0.18 0.96 1.09 1.18 1.13 0.25 0.49
0.4 0.94 1.5 0.23 0.67 1.18 0.78 0.72 0.24 0.53
0.43 1.12 1.7 0.2 0.84 1.57 1.42 1.13 0.23 0.51
0.52 0.72 0.52 0.2 0.75 1.6 1.5 1.18 0.24 0.51
0.54 1.1 1.5 0.22 0.68 1.67 1.46 1.13 0.25 0.42
0.65 1.37 1.7 0.23 0.63 1.87 1.3 0.95 0.246 0.44
0.67 1.6 1.94 0.22 0.68 2.25 1.7 1.13 0.225 0.56

Table 1: Table of experimental parameters for the 20 conducted experiments: The last
two columns show the coefficients of the power law fit for evolution of the upper mixed
layer depth hU/R = A(Ωt)α, where t is the time from the start of the experiment.

A mean azimuthal flow clearly develops due to the coherent rotation of the disc, thus
creating a shear across the interface between the mobilised upper layer and the quies-
cent lower layer. We observe shear-driven overturning behaviour, relatively early in an
experiment when the mixed layer is relatively shallow, particularly for experiments with
relatively small values of RiP , where it is reasonable to suppose that the stratification is
‘weak’ at the interface.

However, as mentioned in the introduction, particularly when the density jump across
the interface is ‘strong’ in some sense, as the turbulent eddies approach the interface
they ‘scour’ dense fluid into the upper layer, and so maintain ‘sharp’ density gradients in
the vicinity of the interface. Such non-diffusive scouring dynamics tended to be observed
when the upper layer was sufficiently deep, particularly for larger values of RiP .

Both diffuse primary interfaces associated with overturning, and sharper interfaces
associated with scouring can be observed in the normalised density profiles ρ̂, defined as

ρ̂ =
ρ− ρT
ρB − ρT

, (2.3)

and measured with the conductivity probe. Such profiles (offset by 0.04 for clarity) are
plotted in figure 2a for an experiment with RiP = 0.67. The upper layer is clearly
very well mixed, although consistently with the observations of SCC12 and Davies et
al. (1995), the depth of the mixed layer does not increase linearly with time, but rather
clearly descends at a decreasing rate with time. (The unphysical offset in the top few
centimetres of the profile is associated with an oscillation in the traverse when it starts
to move.)

In figure 2b, for the same experiment we plot the time evolution of the (natural)
logarithm of the buoyancy frequency N in the 3 cm below the (moving) primary interface
located at z = −hU . We identify the primary interface location −hU as the global (in
space) maximum of the buoyancy frequency; this appears to be a robust way to identify
hU without ambiguity. At earlier times, there is clear evidence of unstable stratification,
resulting from the overturning of energetic shear-driven eddies at the base of the mixed
layer. Conversely, at later times, there is both a sharper primary density interface, and
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Figure 2: a: Sequence of profiles of normalised density ρ̂ as defined in (2.3) separated
in time by intervals of Ω∆t = 4.6 (RiP = 0.67). Consecutive profiles are offset in the
x-coordinate by 0.04 from each other. b: Spatio-temporal variation of logN for the same
experiment in the 3 cm below the primary interface.

also long-lived secondary interfaces below the primary interface, although they exhibit
complex long-time-scale dynamics, in particular through intermittent disappearance and
reappearance. We believe that these interfaces form below the primary interface, and do
not appear to be associated with the radial collapse of regions of partially mixed fluid
above the primary interface, which always appears to be well mixed.

The primary interfacial thickness is both sharp lI ∼ O(0.1 − 1 cm) and constant in
time, consistently with the observations of SCC12. Our observations support the hypoth-
esis that the entrainment process at the interface over much of the flow evolution may
be characterised as a ‘scouring’ process, that continually maintains a relatively sharp
gradient at the interface between the two primary layers.

2.3. Quantitative analysis

Motivated by the arguments of Davies et al. (1995) and SCC12, we postulate that

ĥU = hU/R = A(RiP ) t̂α(RiP ), (2.4)

where the premultiplying scaling factor A(RiP ) and the power law α(RiP ) are allowed in
principle to be functions of RiP . In figure 3a, we plot the nondimensionalised mixed layer
depth ĥU against nondimensional time t̂ for three different typical values of RiP = 0.3,
0.52 and 1.09. A power-law approximation appears to fit each dataset well, as plotted
with a solid line using the values for α(RiP ) and A(RiP ) listed in table 1. Two aspects
are immediately apparent. First, in each case, the power law dependence is close to
α ' 2/9, as shown in the inset. Indeed, as shown in the table and figure 3b, there is
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Figure 3: a) Time evolution of the nondimensional mixed layer depth ĥ for three different
experiments: RiP = 0.3 (red dots), 0.52 (green), and 1.09 (blue); inset shows the same
data on a log-log plot. b) Best-fit values of the power-law coefficient α (defined in 2.4)
plotted as a function of RiP for different experiments (crosses). The lines α = 2/9 and
α = 1/3 are plotted with dashed lines. c) Log-log plot of the best-fit values of the scaling

factor A(RiP ) (as defined in (2.4)) (crosses). The best fit line A = 0.57Ri
−1/3
P is plotted

with a dashed line. Numerical values of α, A, and RiP are listed in table 1.

weak dependence of the power law coefficient α on RiP : the mean value for all twenty
experiments (as shown with a dashed line in figure 3b) is α = 0.229 ' 2/9 with a standard
deviation of 0.02. The data is not consistent with the prediction of Davies et al. (1995)
that α = 1/3. Secondly, the depth of the mixed layer increases more rapidly as RiP
decreases: A(RiP ) ' AcRi−1/3P , where Ac = 0.57, with R2 = 0.93 (figure 3c).

Unlike the observations of SCC12, there is no apparent initial time offset in the data
for the power law dependence, This observation is perhaps a little surprising, since, as
discussed above, the physical mechanisms of entrainment and mixing appear to change
during the flow evolution from at least partially shear-driven overturning to scouring
driven by impinging turbulent eddies. However, since the experimental evidence is that
α < 1/3, it appears appropriate to relax the central assumption of Davies et al. (1995),
that the characteristic velocity of the upper layer uU does not vary with time. Therefore,
we investigate whether some generalisation of the constant-disc-power ‘P’ model discussed
in SCC12 (based around the assumption that the kinetic energy of the upper layer tends

towards a constant and so uU ∝ h
−1/2
U ) may prove to be successful in describing the

observed dynamics of the upper mixed layer.

3. Mixing model

3.1. Layer properties

As a first step to develop a model for the evolution of the upper well-mixed layer, we
define the reduced gravity at a given location z < 0 in the stratified layer as

g′L(z) =
g(ρ− ρT )

ρT
= −N2z, (3.1)

using (2.1). When the upper mixed layer has depth hU , the reduced gravity of the upper
layer g′U , and hence the interfacial Richardson number RiI are given by

g′U =
1

hU

∫ 0

−hU

g′Ldz =
N2hU

2
; RiI =

[g′L(−hU )− g′U ]lI
u2U

=
N2hU lI

2u2U
, (3.2)
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making the conventional assumptions that there is a characteristic velocity scale for the
upper layer uU , and that the interfacial thickness lI is constant in time.

Entraining fluid across the interface increases the density in the upper mixed layer and
clearly increases the potential energy of the system PU (hU ), which we define as

PU (hU ) = ρTπR
2

∫ 0

−h

g(ρU − ρ)z

ρT
dz =

ρTπR
5N2

12

(
h3U
R3

)
= PS ĥ3U , (3.3)

also defining the characteristic scale PS . We now make an assumption, ‘K’, that the total
kinetic energy of the upper layer (1.1) may be considered to be a constant independent of
time. This was a central assumption of SCC12 consistent with their experimental data.
In this flow, we assume further that this constant value of kinetic energy does not depend
on the buoyancy frequency of the lower layer, and so

KU =
1

2
ρTπR

2hUu
2
U =

(
1

2
ρTπR

2

)
CKΩ2R3, (3.4)

for some empirical constant CK , using the Boussinesq approximation.
The key argument is that the velocity in the upper layer is fundamentally set by a

balance between the forcing of the disc and the turbulent dissipation and homogenisation
in the layer, and the particular properties of the lower quiescent layer play a much less
significant role. Using assumption ‘K’, it is then possible to relate uU to hU :

uU = ΩR

(
CK

ĥU

)1/2

, (3.5)

crucially showing that we are assuming that uU decreases as the mixed layer deepens.

3.2. Time dependence of ĥu

We now make a second assumption, ‘P’, that the potential energy of the system increases
due to entrainment at the interface at a rate given by a fixed (empirically determined)
proportion λ of the power PI supplied at the interface by the interfacial stress σ,

PI =
d

dt
W = πR2uIσ = πR2cDρTu

3
U , (3.6)

following SCC12, and using the Boussinesq assumption, where cD is some empirically
determined drag coefficient, and W is the work done locally at the interface by the
disc forcing via the action of the turbulent flow. Therefore, using (3.3), (3.5) and (3.6)
assumption ‘P’ yields a straightforward differential equation for hU which can be solved
using the initial condition that ĥU (0) = 0:

d

dt

[
ρTπR

2N
2h3U
12

]
= λcDu

3
U (ρTπR

2)→ ĥU = C
3/2
K

(
18φ

[
Ω2

N2

]
t̂

)2/9

, (3.7)

defining φ = λcD. It is plausible that φ depends on some nondimensional function of Ω
and N , associated with some dependence of the entrainment process on the developing
stratification. We attempt to capture this dependence by making a third assumption,
‘E’, that the scaled entrainment parameter E, defined appropriately for this flow as

E = ḣU/uu, (3.8)

(see SCC12 for further discussion) depends only on the present value of the interfacial
Richardson RiI , as defined in (3.2). Using (3.5), (3.7).

E =
4φu2U
N2h2U

=
4φCKΩ2R3

N2h3U
= φ1/3

(
2

3

)4/3(
Ω

N

)2/3

t̂−2/3, (3.9a)
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RiI =
N2hU lI

2u2U
=
N2h2U lI
2hUu2U

= φ4/9
(
lI
2R

)
184/9

C
1/3
K

(
Ω

N

)−10/9
t̂4/9. (3.9b)

Therefore, for assumption ‘E’ to be valid for all time, the time dependence of (3.9a) and
(3.9b) must be matched, which is equivalent to assuming that

E = ARRi
−3/2
I , (3.10)

where AR is once again an empirical constant, and consistently with the previous ob-
servations of Kit, Berent & Vajda (1980) in a flow with similar forcing. Since both E
and RiI both also depend on φ and Ω/N (and hence RiP ), this required power law
dependence (3.10) also implies a consistency condition for φ:

φ =
ARC

1/2
K

4

(
lI
2R

)−3/2
Ω

N
=
ARC

1/2
K

4

(
lI
2R

)−3/2
Ri
−1/2
P . (3.11)

Substituting this expression into (3.7), we obtain the final model prediction for the mixed

layer depth ĥU using the three key assumptions ‘K’, ‘P’, and ‘E’:

ĥU =

(
9

2
ARC

2
K

)2/9(
2R

lI

)1/3

Ri
−1/3
P t̂ 2/9 = AcRi

−1/3
P t̂ 2/9. (3.12)

This expression recovers precisely the observed scaling for ĥU as shown in figure 3.

3.3. Implications

Combining (3.9b) with (3.11), the interfacial Richardson number RiI can be expresses
as a function of time and RiP as defined in (2.2):

RiI =

(
9AR

2

)4/9(
lI
2R

)1/3

Ri
1/3
P t̂ 4/9. (3.13)

Since we now have derived scaling expressions for φ, uU and RiI (and in particular hU ,
uU and RiI are all functions of t̂) it is thus possible to re-express the rate of change of
the flow’s potential energy PU using (3.3) in terms of RiI and RiP :

d

dt̂

(
PU
PS

)
=
(

3ARC
5/4
K

)(2R

lI

)3/4

Ri
−1/4
P Ri

−3/4
I =

(
AP

RiPRi3I

)1/4

, (3.14)

defining a new empirical constant AP .
Therefore, within our model, the rate of increase of the potential energy is predicted

to be a decreasing function of the interfacial Richardson number. Such a dependence is
all that is required by the arguments presented by Phillips (1972), and so secondary
layering would be expected to occur in our flow. This is consistent with our observations,
as is apparent in figure 2, even though the modelling effort leading to (3.14) is built on a
strong set of assumptions. Since the decreasing dependence of dPU/dt on RiI is predicted
to occur throughout the lifetime of an experiment, this particular flow geometry seems
to be particularly conducive to the detailed study of the development of layers within a
forced stratified turbulent flow, an issue to which we intend to return in due course.

4. Conclusions

In this paper we have described the results of a sequence of experiments designed
to study turbulent entrainment, mixing and homogenisation in a shear-driven turbulent
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stratified flow. In particular, we have studied the increase in depth hU of a surface-
stress-driven mixed layer in a cylindrical tank initially filled with linearly stratified
fluid. We demonstrate that the rate of increase of mixed layer depth decreases mea-
surably with time, and furthermore that the data closely agrees with the scaling hU ∝
(Ω/N)−2/3(Ωt)2/9 for a wide range of values of Ω and N . A key physical observation is
that the interfacial thickness lI between the upper well-mixed turbulent layer and the
quiescent linearly stratified lower layer appears to be ‘scoured’ to be close to a constant
value both with respect to time and RiP as defined in (2.2). This observation is consistent
with much previous work in a range of stratified entrainment and mixing studies (see
e.g. the recent work of Oglethorpe, Caulfield & Woods (2013)).

We present physical and mathematical arguments to justify the observed scaling for
hU , and demonstrate that this scaling is consistent with three central assumptions, build-
ing on previous research. Assumption ‘P’, that the rate of the potential energy increase is
proportional to the power supplied through turbulent interfacial stresses (in turn propor-
tional to u3U ), builds on the arguments of Davies et al. (1995) and Boyer et al. (1997).
However, the central, and robust observation that the depth hU ∝ t̂2/9 appears to re-
quire that uU must also vary with time, contrary to the models presented by Davies et
al. (1995) and Boyer et al. (1997). Building on SCC12, we make assumption ‘K’, that
the kinetic energy of the upper layer tends towards a constant in time, which constant
depends on the rotation rate Ω, but is not dependent on the stratification of the lower,
quiescent layer. This scaling yields the ‘correct’ observed time-dependence of hU .

However, the fact that the lower layer is linearly stratified enables us to go further
in modelling the interfacial entrainment dynamics, and use the conventional assump-
tion, (see for example the review of Fernando (1991)), which we refer to as assumption
‘E’, that the dynamics of the entrainment depends only on the (present) value of the
interfacial Richardson number RiI , as defined in (3.2). Since this in turn depends on
time, assumption ‘E’ effectively imposes a consistency condition between hU and RiI .

As we demonstrate above, this consistency condition implies that hU ∝ Ri−1/3P , which is
strongly supported by our experimental data.

Furthermore, and perhaps more interestingly, internal consistency between our model
assumptions and the data also implies that the rate of increase of potential energy, asso-
ciated with entrainment across the density interface, actually decreases with the interfa-
cial Richardson number RiI . Such an effective decrease in buoyancy flux with sufficiently
‘strong’ overall stratification points towards the natural development of secondary layers
at the interface, due to the physical argument originally presented by Phillips (1972).
Such layers have been observed to develop in many different experimental situations
(see the early review of Linden (1979), and Park, Whitehead & Gnanadeskian (1994),
Holford & Linden (1999), Oglethorpe, Caulfield & Woods (2013)) as well as in phe-
nomenological models (e.g. Balmforth, Llewellyn Smith & Young (1998)) that attempted
to theoretically rationalise the observed layering. This experimental geometry seems to
be particularly well-suited to investigate the creation and maintenance of such dynami-
cally generated and maintained layered density distributions. The continual deepening of
the primary mixed layer inevitably requires the interface bounding a secondary ‘mixed’
layer to be reformed and reinforced in a new, and always deeper, region of the linearly
stratified lower layer. This experimental geometry allows such layers and interfaces to be
observed over long time-periods (see figure 2b), and so is an ideal test-bed to develop
improvements in larger scale parameterisations of ocean mixing (see for example Large,
McWilliams & Doney (1994)) which capture flow dynamics exhibiting spontaneous hy-



12 G.E. Manucharyan & C.P. Caulfield

drodynamical layer formation due to the ‘Phillips’ mechanism. We intend to report on
just such an investigation of secondary layer dynamics in due course.

The experiments were conducted during the 2010 Geophysical Fluid Dynamics Pro-
gram at Woods Hole Oceanographic Institution. Financial support from the National Sci-
ence Foundation, the Office of Naval Research and Woods Hole Oceanographic Institution
is gratefully acknowledged, as well as valuable technical support from Anders Hansen. The
research activity of C.P.C. is supported by EPSRC Programme Grant EP/K034529/1
entitled ‘Mathematical Underpinnings of Stratified Turbulence.’
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