10 research outputs found

    Diode-switched thermal-transfer printed antenna on flexible substrate

    Get PDF
    We demonstrate that diode-switching can be used to introduce frequency agility into antennas produced by thermal transfer printing. Our particular example is a triangular Sierpinski fractal pattern with two PIN diodes to switch between operation optimised for the 800 MHz UHF band (diodes on) and the 2400 MHz ISM band (diodes off). Our measured results show an improvement in S11 in the UHF band from -2 dB to -28 dB, and from -7 dB to -30 dB at 2400 MHz, when switching the diodes appropriately. The measured bandwidth is 200 (1000) MHz, and the measured directivity is 3.1dB (5.2dB) while the measured gain is -5.2dB (6.7dB) for the diodes on(off)

    Optimised Curing of Silver Ink Jet Based Printed Traces

    Get PDF
    Manufacturing electronic devices by printing techniques with low temperature sintering of nano-size material particles can revolutionize the electronics industry in coming years. The impact of this change to the industry can be significant enabling low-cost products and flexibility in manufacturing. implementation of a new production technology with new materials requires thorough elementary knowledge creation. It should be noticed that although some of first electronic devices ideally can be manufactured by printing, at the present several modules are in fact manufactured by using hybrid techniques (for instance photolithography, vapor depositions, spraying, etc...).Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    MMN and Differential Waveform

    Get PDF
    A mismatch negativity response (MMN) and a new differential waveform were derived in an effort to evaluate a neural refractory or recovery effect in adult listeners. The MMN was elicited using oddball test runs in which the standard and deviant stimuli differed in frequency. To derive the differential waveform, the same standard and deviant stimuli were presented alone. MMN responses were obtained by subtracting the averaged responses to standards from the deviants. The differential waveforms were obtained by subtracting the averaged responses to standards presented alone from deviants presented alone. Scalp topography for the MMN and differential waveforms were similar. A significant (p < .05) positive and negative correlation was found between the earlier and later components of the bimodal MMN and the N1 and P2 component of the differential waveform, respectively. Further, N1 and P2 of the differential waveform were significant (p < .05) predictor variables of early and late peak amplitudes of the MMN. These results suggest that refractory effects may overlay/modify the morphology of the MMN waveform
    corecore