307 research outputs found

    Node Heterogeneity for Energy Efficient Synchronization for Wireless Sensor Network

    Get PDF
    AbstractThe energy of the node in the Wireless Sensor Networks (WSNs) is scare and causes the variation in the lifetime of the network. Also, the throughput and delay of the network depend on how long the network sustains i.e. energy consumption. One way to increase the sustainability of network is the introduction of heterogeneous nodes regarding energy, and the other is to synchronize the local clock of the node with the global clock of the network. In this context, the paper proposes Node Heterogeneity aware Energy Efficient Synchronization Algorithm (NHES). It works on the formation of cluster-based spanning tree (SPT). In the initial stage of the algorithm, the nodes are grouped into the cluster and form the tree. The nodes in the cluster and cluster heads in the network are synchronized with the notion of the global time scale of the network. Also, clock skews may cause the errors and be one of the sources of delay and energy consumption. To minimize the energy consumptions and delay, NHES synchronizes the time slots using TDMA based MAC protocol. The results show that level by level synchronization used in NHES is energy efficient and has less delay as compared to the state-of-the-art solutions

    Variation of abductor pollicis longus tendons in cadavers

    Get PDF
    Background: First extensor compartment of the wrist comprises of abductor pollicis longus and extensor pollicis brevis. It helps in movement and stabilization of thumb. Variations in the number of tendons of APL muscle may be asymptomatic and often incidental finding. Stenosing tenosynovitis of the first dorsal compartment of the wrist or de Quervains disease is a commonly encountered debilitating condition of the wrist.Methods: This cadaveric study was done on 40 forearms in 20 cadavers available in Department of anatomy and forensic medicine at our institute. The muscles of extensor compartments were dissected, extensor retinaculum split over first extensor compartment, tendons of APL exposed. Study period from February-2017 to February-2018.Results: There were 6 female and 14 male cadavers. The APL muscle was found with a single tendon in 2, double in 30, triple in 8. There were variations in the insertion of the APL tendon as well. In all hands, the APL tendon had insertion into the first metacarpal bone and in 20 hands (50%), it had second insertion into the trapezium.Conclusions: Variation of APL muscle insertion in the Indian population and two or more tendinous slips attached commonly to the first metacarpal base and the trapezium may be the cause of treatment failure in DQT and cause of Trapeziometacarpal arthritis. Further studies needs to be done for further evaluation

    Deep Learning for User Behaviour Prediction Using Streaming Analytics

    Get PDF
    Streams of web user interactions reflect behaviour of customers or users of a web application through which a company is being operated online. The interactions may be in the form of visits to web components and even purchases made by users in case of e-Commerce applications. Modelling user behaviour can help the organizations to ascertain patterns of user behaviours and improve their products and services to meet their needs besides making promotional schemes. There are many existing methods for modelling user behaviour. However, of late, deep learning models are found to be more accurate and useful. In this paper a deep learning based framework is proposed for predicting web user behaviour from streams of user interactions. The framework is based on the mechanisms that exploit Recurrent Neural Network (RNN), one of the deep learning approaches, to learn from low-level features of sequential and streaming data. The mechanisms are used to model user interactions and predict the user behaviour with respect to purchasing items in future. In presence of plenty of items, item embeddings is explored for better results. In addition to this, attention mechanisms are employed to achieve RNN model interoperability. The empirical study revealed that the proposed framework is useful besides helping to evaluate different variants of attention mechanisms and item embeddings

    Comparative Root Transcriptomics Provide Insights into Drought Adaptation Strategies in Chickpea (Cicer arietinum L.)

    Get PDF
    Drought adversely affects crop production across the globe. The root system immensely contributes to water management and the adaptability of plants to drought stress. In this study, drought-inducedphenotypic andtranscriptomic responses of two contrasting chickpea (Cicer arietinum L.) genotypes were compared at the vegetative, reproductive transition, and reproductive stages. At the vegetative stage, drought-tolerant genotype maintained higher root biomass, length, and surface area under drought stress as compared to sensitive genotype. However, at the reproductive stage, root length and surface area of tolerant genotype was lower but displayed higher root diameter than sensitive genotype. The shoot biomass of tolerant genotype was overall higher than the sensitive genotype under drought stress. RNA-seq analysis identified genotype- and developmental-stage specific differentially expressed genes (DEGs) in response to drought stress. At the vegetative stage, a total of 2161 and 1873 DEGs, and at reproductive stage 4109 and 3772 DEGs, were identified in the tolerant and sensitive genotypes, respectively. Gene ontology (GO) analysis revealed enrichment of biological categories related to cellular process, metabolic process, response to stimulus, response to abiotic stress, and response to hormones. Interestingly, the expression of stress-responsive transcription factors, kinases, ROS signaling and scavenging, transporters, root nodulation, and oxylipin biosynthesis genes were robustly upregulated in the tolerant genotype, possibly contributing to drought adaptation. Furthermore, activation/repression of hormone signaling and biosynthesis genes was observed. Overall, this study sheds new insights on drought tolerance mechanisms operating in roots with broader implications for chickpea improvement

    Comparative flower transcriptome network analysis reveals DEGs involved in chickpea reproductive success during salinity

    Get PDF
    Salinity is increasingly becoming a significant problem for the most important yet intrinsically salt-sensitive grain legume chickpea. Chickpea is extremely sensitive to salinity during the reproductive phase. Therefore, it is essential to understand the molecular mechanisms by comparing the transcriptomic dynamics between the two contrasting genotypes in response to salt stress. Chickpea exhibits considerable genetic variation amongst improved cultivars, which show better yields in saline conditions but still need to be enhanced for sustainable crop production. Based on previous extensive multi-location physiological screening, two identified genotypes, JG11 (salt-tolerant) and ICCV2 (salt-sensitive), were subjected to salt stress to evaluate their phenological and transcriptional responses. RNA-Sequencing is a revolutionary tool that allows for comprehensive transcriptome profiling to identify genes and alleles associated with stress tolerance and sensitivity. After the first flowering, the whole flower from stress-tolerant and sensitive genotypes was collected. A total of ~300 million RNA-Seq reads were sequenced, resulting in 2022 differentially expressed genes (DEGs) in response to salt stress. Genes involved in flowering time such as FLOWERING LOCUS T (FT) and pollen development such as ABORTED MICROSPORES (AMS), rho-GTPase, and pollen-receptor kinase were significantly differentially regulated, suggesting their role in salt tolerance. In addition to this, we identify a suite of essential genes such as MYB proteins, MADS-box, and chloride ion channel genes, which are crucial regulators of transcriptional responses to salinity tolerance. The gene set enrichment analysis and functional annotation of these genes in flower development suggest that they can be potential candidates for chickpea crop improvement for salt tolerance

    Differential regulation of genes involved in root morphogenesis and cell wall modification is associated with salinity tolerance in chickpea

    Get PDF
    Salinity is a major constraint for intrinsically salt sensitive grain legume chickpea. Chickpea exhibits large genetic variation amongst cultivars, which show better yields in saline conditions but still need to be improved further for sustainable crop production. Based on previous multi-location physiological screening, JG 11 (salt tolerant) and ICCV 2 (salt sensitive) were subjected to salt stress to evaluate their physiological and transcriptional responses. A total of ~480 million RNA-Seq reads were sequenced from root tissues which resulted in identification of 3,053 differentially expressed genes (DEGs) in response to salt stress. Reproductive stage shows high number of DEGs suggesting major transcriptional reorganization in response to salt to enable tolerance. Importantly, cationic peroxidase, Aspartic ase, NRT1/PTR, phosphatidylinositol phosphate kinase, DREB1E and ERF genes were significantly up-regulated in tolerant genotype. In addition, we identified a suite of important genes involved in cell wall modification and root morphogenesis such as dirigent proteins, expansin and casparian strip membrane proteins that could potentially confer salt tolerance. Further, phytohormonal cross-talk between ERF and PIN-FORMED genes which modulate the root growth was observed. The gene set enrichment analysis and functional annotation of these genes suggests they may be utilised as potential candidates for improving chickpea salt tolerance

    Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea

    Get PDF
    Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea

    Draft Genome Report of Bacillus altitudinis SORB11, Isolated from the Indian Sector of the Southern Ocean

    Get PDF
    Here, we present the draft genome sequence of Bacillus altitudinis SORB11, which is tolerant to UV radiation. The strain was isolated from the Indian sector of the Southern Ocean at a depth of 3.8 km. The genome sequence information reported here for B. altitudinis SORB11 gives the basis of its UV resistance mechanism and provides data for further comparative studies with other bacteria resistant to UV radiation

    Ferroelectric Solitons Crafted in Epitaxial Bismuth Ferrite Superlattices

    Full text link
    In ferroelectrics, complex interactions among various degrees of freedom enable the condensation of topologically protected polarization textures. Known as ferroelectric solitons, these particle-like structures represent a new class of materials with promise for beyond CMOS technologies due to their ultrafine size and sensitivity to external stimuli. Such polarization textures have scarcely been reported in multiferroics. Here, we report a range of soliton topologies in bismuth ferrite strontium titanate superlattices. High-resolution piezoresponse force microscopy and Cs-corrected high-angle annular dark-field scanning transmission electron microscopy reveal a zoo of topologies, and polarization displacement mapping of planar specimens reveals center-convergent and divergent topological defects as small as 3 nm. Phase field simulations verify that some of these topologies can be classed as bimerons, with a topological charge of plus and minus one, and first-principles-based effective Hamiltonian computations show that the co-existence of such structures can lead to non-integer topological charges, a first observation in a BiFeO3-based system. Our results open new opportunities in multiferroic topotronics

    Verifiable blind quantum computing with trapped ions and single photons

    Get PDF
    We report the first hybrid matter-photon implementation of verifiable blind quantum computing. We use a trapped-ion quantum server and a client-side photonic detection system networked via a fiber-optic quantum link. The availability of memory qubits and deterministic entangling gates enables interactive protocols without postselection - key requirements for any scalable blind server, which previous realizations could not provide. We quantify the privacy at ≲0.03 leaked classical bits per qubit. This experiment demonstrates a path to fully verified quantum computing in the cloud
    • …
    corecore