19 research outputs found

    FaGAPC2/FaPKc2.2 and FaPEPCK reveal differential citric acid metabolism regulation in late development of strawberry fruit

    Get PDF
    Citric acid is the primary organic acid that affects the taste of strawberry fruit. Glycolysis supplies key substrates for the tricarboxylic acid cycle (TCA cycle). However, little is known about the regulatory mechanisms of glycolytic genes on citric acid metabolism in strawberry fruits. In this study, the citric acid content of strawberry fruit displayed a trend of rising and decreasing from the initial red stage to the full red stage and then dark red stage. Thus, a difference in citric acid metabolic regulation was suspected during strawberry fruit development. In addition, overexpression of either cytoplasm glyceraldehyde-3-phosphate dehydrogenase (FxaC_14g13400, namely FaGAPC2) or pyruvate kinase (FxaC_15g00080, namely FaPKc2.2) inhibited strawberry fruit ripening and the accumulation of citric acid, leading to a range of maturity stages from partial red to full red stage. The combined transcriptome and metabolome analysis revealed that overexpression of FaGAPC2 and FaPKc2.2 significantly suppressed the expression of phosphoenolpyruvate carboxykinase (FxaC_1g21491, namely FaPEPCK) but enhanced the content of glutamine and aspartic acid. Meanwhile, the activities of PEPCK and glutamate decarboxylase (GAD) were inhibited, but the activities of glutamine synthase (GS) were increased in FaGAPC2/FaPKc2.2-overexpressed fruit. Further, functional verification demonstrated that overexpression of FaPEPCK can promote strawberry fruit ripening, resulting in a range of maturity stage from full red to dark red stage, while the citric acid synthase (CS) activities and citric acid content were significantly decreased. Overall, this study revealed that FaGAPC2/FaPKc2.2 and FaPEPCK perform an important role in reducing citric acid content in strawberry fruit, and FaGAPC2/FaPKc2.2 mainly by promoting the GS degradation pathway and FaPEPCK mainly by inhibiting the CS synthesis pathway

    EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis seedlings

    No full text
    The ability to switch from skotomorphogenesis to photomorphogenesis is essential for seedling development and plant survival. Recent studies revealed that COP1 and phytochrome-interacting factors (PIFs) are key regulators of this transition by repressing the photomorphogenic responses and/or maintaining the skotomorphogenic state of etiolated seedlings. Here we report that the plant hormone ethylene plays a crucial role in the transition from skotomorphogenesis to photomorphogenesis by facilitating greening of etiolated seedlings upon light irradiation. Activation of EIN3/EIL1 is both necessary and sufficient for ethylene-induced enhancement of seedling greening, as well as repression of the accumulation of protochlorophyllide, a phototoxic intermediate of chlorophyll synthesis. EIN3/EIL1 were found to induce gene expression of two key enzymes in the chlorophyll synthesis pathway, protochlorophyllide oxidoreductase A and B (PORA/B). ChIP and EMSA assays demonstrated that EIN3 directly binds to the specific elements present in the PORA and PORB promoters. Genetic studies revealed that EIN3/EIL1 function in cooperation with PIF1 in preventing photo-oxidative damage and promoting cotyledon greening. Moreover, activation of EIN3 reverses the blockage of greening triggered by cop1 mutation or far-red light irradiation. Consistently, EIN3 acts downstream of COP1 and its protein accumulation is enhanced by COP1 but decreased by light. Taken together, EIN3/EIL1 represent a new class of transcriptional regulators along with PIF1 to optimize de-etiolation of Arabidopsis seedlings. Our study highlights the essential role of ethylene in enhancing seedling development and survival through protecting etiolated seedlings against photo-oxidative damage

    The Role of Autophagy in Parkinson’s Disease

    No full text
    Great progress has been made toward understanding the pathogenesis of Parkinson’s disease (PD) during the past two decades, mainly as a consequence of the discovery of specific gene mutations contributing to the onset of PD. Recently, dysregulation of the autophagy pathway has been observed in the brains of PD patients and in animal models of PD, indicating the emerging role of autophagy in this disease. Indeed, autophagy is increasingly implicated in a number of pathophysiologies, including various neurodegenerative diseases. This article will lead you through the connection between autophagy and PD by introducing the concept and physiological function of autophagy, and the proteins related to autosomal dominant and autosomal recessive PD, particularly α-synuclein and PINK1-PARKIN, as they pertain to autophagy
    corecore