2,203 research outputs found

    Monopole Planets and Galaxies

    Full text link
    Spherical clusters of SU(2) BPS monopoles are investigated here. A large class of monopole solutions is found using an abelian approximation, where the clusters are spherically symmetric, although exact solutions cannot have this symmetry precisely. Monopole clusters generalise the Bolognesi magnetic bag solution of the same charge, but they are always larger. Selected density profiles give structures analogous to planets of uniform density, and galaxies with a density decaying as the inverse square of the distance from the centre. The Bolognesi bag itself has features analogous to a black hole, and this analogy between monopole clusters and astrophysical objects with or without black holes in their central region is developed further. It is also shown that certain exact, platonic monopoles of small charge have sizes and other features consistent with what is expected for magnetic bags.Comment: 23 pages. Revised version to appear in Physical Review D. New introduction and conclusions; analogy between monopoles and astrophysical objects developed furthe

    Calogero-Moser Models V: Supersymmetry and Quantum Lax Pair

    Full text link
    It is shown that the Calogero-Moser models based on all root systems of the finite reflection groups (both the crystallographic and non-crystallographic cases) with the rational (with/without a harmonic confining potential), trigonometric and hyperbolic potentials can be simply supersymmetrised in terms of superpotentials. There is a universal formula for the supersymmetric ground state wavefunction. Since the bosonic part of each supersymmetric model is the usual quantum Calogero-Moser model, this gives a universal formula for its ground state wavefunction and energy, which is determined purely algebraically. Quantum Lax pair operators and conserved quantities for all the above Calogero-Moser models are established.Comment: LaTeX2e, 31 pages, no figure

    Thermodynamics of Vortices in the Plane

    Full text link
    The thermodynamics of vortices in the critically coupled abelian Higgs model, defined on the plane, are investigated by placing NN vortices in a region of the plane with periodic boundary conditions: a torus. It is noted that the moduli space for NN vortices, which is the same as that of NN indistinguishable points on a torus, fibrates into a CPN−1CP_{N-1} bundle over the Jacobi manifold of the torus. The volume of the moduli space is a product of the area of the base of this bundle and the volume of the fibre. These two values are determined by considering two 2-surfaces in the bundle corresponding to a rigid motion of a vortex configuration, and a motion around a fixed centre of mass. The partition function for the vortices is proportional to the volume of the moduli space, and the equation of state for the vortices is P(A−4πN)=NTP(A-4\pi N)=NT in the thermodynamic limit, where PP is the pressure, AA the area of the region of the plane occupied by the vortices, and TT the temperature. There is no phase transition.Comment: 17 pages, DAMTP 93-3

    The interaction energy of well-separated Skyrme solitons

    Get PDF
    We prove that the asymptotic field of a Skyrme soliton of any degree has a non-trivial multipole expansion. It follows that every Skyrme soliton has a well-defined leading multipole moment. We derive an expression for the linear interaction energy of well-separated Skyrme solitons in terms of their leading multipole moments. This expression can always be made negative by suitable rotations of one of the Skyrme solitons in space and iso-space.We show that the linear interaction energy dominates for large separation if the orders of the Skyrme solitons' multipole moments differ by at most two. In that case there are therefore always attractive forces between the Skyrme solitons.Comment: 27 pages amslate

    Skyrmions, Rational Maps & Scaling Identities

    Get PDF
    Starting from approximate Skyrmion solutions obtained using the rational map ansatz, improved approximate Skyrmions are constructed using scaling arguments. Although the energy improvement is small, the change of shape clarifies whether the true Skyrmions are more oblate or prolate.Comment: 13 pages, 3 figure

    New results on twinlike models

    Full text link
    In this work we study the presence of kinks in models described by a single real scalar field in bidimensional spacetime. We work within the first-order framework, and we show how to write first-order differential equations that solve the equations of motion. The first-order equations strongly simplify the study of linear stability, which is implemented on general grounds. They also lead to a direct investigation of twinlike theories, which is used to introduce a family of models that support the same defect structure, with the very same energy density and linear stability.Comment: 6 pages, 1 figur

    The K\"ahler Potential of Abelian Higgs Vortices

    Full text link
    We calculate the K\"ahler potential for the Samols metric on the moduli space of Abelian Higgs vortices on \mathbbm{R}^{2}, in two different ways. The first uses a scaling argument. The second is related to the Polyakov conjecture in Liouville field theory. The K\"ahler potential on the moduli space of vortices on \mathbbm{H}^{2} is also derived, and we are led to a geometrical reinterpretation of these vortices. Finally, we attempt to find the K\"ahler potential for vortices on \mathbbm{R}^{2} in a third way by relating the vortices to SU(2) Yang-Mills instantons on \mathbbm{R}^{2}\times S^{2}. This approach does not give the correct result, and we offer a possible explanation for this.Comment: 25 page

    Reparametrising the Skyrme Model using the Lithium-6 Nucleus

    Get PDF
    The minimal energy B=6 solution of the Skyrme model is a static soliton with D4dD_{4d} symmetry. The symmetries of the solution imply that the quantum numbers of the ground state are the same as those of the Lithium-6 nucleus. This identification is considered further by obtaining expressions for the mean charge radius and quadrupole moment, dependent only on the Skyrme model parameters ee (a dimensionless constant) and FπF_\pi (the pion decay constant). The optimal values of these parameters have often been deliberated upon, and we propose, for B>2B>2, changing them from those which are most commonly accepted. We obtain specific values for these parameters for B=6, by matching with properties of the Lithium-6 nucleus. We find further support for the new values by reconsidering the α\alpha-particle and deuteron as quantized B=4 and B=2 Skyrmions.Comment: 18 page
    • …
    corecore