723 research outputs found

    Contrasting Nephropathic Responses to Oral Administration of Extract of Cultured Penicillium polonicum in Rat and Primate

    Get PDF
    Liquid- or solid substrate-cultured Penicillium polonicum administered in feed to rats over several days evokes a histopathological response in kidney involving apoptosis and abnormal mitosis in proximal tubules. The amphoteric toxin is yet only partly characterized, but can be isolated from cultured sporulating biomass in a fraction that is soluble in water and ethanol, and exchangeable on either anion- or cation-exchange resins. After several weeks of treatment renal proximal tubule distortion became striking on account of karyocytomegaly, but even treatment for nearly two years remained asymptomatic. Extract from a batch of solid substrate fermentation of P. polonicum on shredded wheat was incorporated into feed for rats during four consecutive days, and also given as an aqueous solution by oral gavage to a vervet monkey daily for 10 days. Treatment was asymptomatic for both types of animal. Rat response was evident as the typical renal apoptosis and karyomegaly. In contrast there was no such response in the primate; and neither creatinine clearance nor any haematological characteristic or serum component concentration deviated from a control or from historical data for this primate. The contrast is discussed concerning other negative findings for P. polonicum in pigs and hamsters. Renal karyomegaly, as a common rat response to persistent exposure to ochratoxin A, is not known in humans suspected as being exposed to more than the usual trace amounts of dietary ochratoxin A. Therefore the present findings question assumptions that human response to ochratoxin A conforms to that in the rat

    Binding of Ochratoxin A to a Urinary Globulin: A New Concept to Account for Gender Difference in Rat Nephrocarcinogenic Responses

    Get PDF
    SDS-gradient mini-gel electrophoresis and immunoblotting of urine of rats given ochratoxin A (OTA), showed OTA binding to an α2u-globulin. Perceived potential internalised delivery of OTA to proximal tubule epithelia by the carrier, specific only to adult male rats and augmenting other uptake mechanisms, suggests that some experimental nephrotoxicological data may not be appropriate for human risk assessment. Reexamination of female rat renal tumour histopathology of the NTP high dose OTA study showed all carcinomas were solitary, unilateral, microscopic and clinically insignificant at the 2-year end-stage. The novel concept, when consolidated further from our archived material, may moderate current perceptions of the human risk of traces of dietary OTA

    On high-speed turning of a third-generation gamma titanium aluminide

    Get PDF
    Gamma titanium aluminides are heat-resistant intermetallic alloys predestined to be employed in components suffering from high mechanical stresses and thermal loads. These materials are regarded as difficult to cut, so this makes process adaptation essential in order to obtain high-quality and defect-free surfaces suitable for aerospace and automotive parts. In this paper, an innovative approach for longitudinal external high-speed turning of a third-generation Ti-45Al-8Nb- 0.2C-0.2B gamma titanium aluminide is presented. The experimental campaign has been executed with different process parameters, tool geometries and lubrication conditions. The results are discussed in terms of surface roughness/integrity, chip morphology, cutting forces and tool wear. Experimental evidence showed that, due to the high cutting speed, the high temperatures reached in the shear zone improve chip formation, so a crack-free surface can be obtained. Furthermore, the use of a cryogenic lubrication system has been identified in order to reduce the huge tool wear, which represents the main drawback when machining gamma titanium aluminides under the chosen process condition

    Reducing delays in the diagnosis and treatment of muscle-invasive bladder cancer using simulation modelling

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this record Objective: To develop a simulation model to identify key bottlenecks in the bladder cancer pathway at Royal Cornwall Hospital and predict the impact of potential changes to reduce these delays. Materials and methods: The diagnosis and treatment of muscle-invasive bladder cancer can suffer numerous delays, which can significantly affect patient outcomes. We developed a discrete event computer simulation model of the flow of patients through the bladder cancer pathway at the hospital, using anonymised patient records from 2014 and 2015. The changes tested in the model were for patients suspected to have muscle-invasive disease on flexible cystoscopy. Those patients were ‘fast-tracked’ to receive their transurethral resection of bladder tumour (TURBT) treatment using operating slots kept free for these patients. A staging computed tomography scan was booked in the haematuria clinic. Pathology requests were marked as 48 hour turnaround. The nurse specialist would then speak to the patient whilst they were on the ward following their TURBT to give information about their ongoing treatment and provide support. Results: The model predicted that if the changes were implemented, delays in the system could be reduced by around 5 weeks. The changes were implemented, and analysis of 3 months of the data post-implementation shows that the average time in the system was reduced by 5 weeks. The environment created by the changes in the pathway improved referral to treatment times in both muscle-invasive and non-muscle-invasive groups. Conclusion: The simulation model proved an invaluable tool for facilitating the implementation of changes. Simple changes to the pathway led to significant reductions in delays for bladder cancer patients at Royal Cornwall Hospital. Level of evidence: Not applicable for this cohort study.National Institute for Health Research (NIHR

    Effects of surface modifications on molecular diffusion in mesoporous catalytic materials

    Get PDF
    In this work, we use pulsed-field gradient (PFG) NMR to probe molecular diffusion of liquids inside mesoporous structures and assess the influence of surface modifications, namely, deposition of palladium (Pd) nanoparticles over alumina (Al2O3) surfaces and passivation of titania (TiO2) surfaces with alkyl chains, on the diffusion pattern

    Adsorption of pyridine from aqueous solutions by polymeric adsorbents MN 200 and MN 500. Part 1: Adsorption performance and PFG-NMR studies

    Get PDF
    The removal of pyridine from aqueous solutions was carried out using Macronet polymeric adsorbents MN 200 and MN 500. The optimal pyridine uptakes were in approximately neutral solutions as a result of optimal effect of π -π hydrophobic and attractive electrostatic interactions between pyridine and the adsorbents. These adsorbents showed superior pyridine uptake capacities than some apatite and activated carbons in isotherm studies. Thermodynamic analysis showed that pyridine adsorption is exothermic on MN 200 and endothermic on MN 500, implying that the adsorption on MN 500 is an activated process, which is attributed to the presence of sulfonic acid groups. Pseudo-first and second order rate models were used to fit the adsorption kinetics for the adsorbents. Translational dynamics of guest molecules within the porous polymers was analysed by PFG-NMR diffusion technique and the diffusion behaviour was characterised by two distinctive diffusion regions. PFG-NMR derived self-diffusion coefficients of pyridine in MN 500 were much slower than the expected diffusion coefficients based on a purely geometrical confinement effect, which suggests the interaction of pyridine with the sulfonic acid groups on MN 500 and their stronger effect on diffusivity also enhances the adsorption performance of this adsorbent. These studies reveal new insights into adsorption properties of pyridine in porous polymers in relation to the structural and surface properties probed by PFG-NMR and account for the effectiveness of these adsorbents in the treatment of waste water containing the aromatic N-heterocyclic compound.Carmine D’Agostino would like to acknowledge Wolfson College, Cambridge, for supporting his research activities.This is the author accepted manuscript. The final version is available from Elsevier at http://dx.doi.org/10.1016/j.cej.2016.07.039

    Fast imaging of laboratory core floods using 3D compressed sensing RARE MRI.

    Get PDF
    Three-dimensional (3D) imaging of the fluid distributions within the rock is essential to enable the unambiguous interpretation of core flooding data. Magnetic resonance imaging (MRI) has been widely used to image fluid saturation in rock cores; however, conventional acquisition strategies are typically too slow to capture the dynamic nature of the displacement processes that are of interest. Using Compressed Sensing (CS), it is possible to reconstruct a near-perfect image from significantly fewer measurements than was previously thought necessary, and this can result in a significant reduction in the image acquisition times. In the present study, a method using the Rapid Acquisition with Relaxation Enhancement (RARE) pulse sequence with CS to provide 3D images of the fluid saturation in rock core samples during laboratory core floods is demonstrated. An objective method using image quality metrics for the determination of the most suitable regularisation functional to be used in the CS reconstructions is reported. It is shown that for the present application, Total Variation outperforms the Haar and Daubechies3 wavelet families in terms of the agreement of their respective CS reconstructions with a fully-sampled reference image. Using the CS-RARE approach, 3D images of the fluid saturation in the rock core have been acquired in 16min. The CS-RARE technique has been applied to image the residual water saturation in the rock during a water-water displacement core flood. With a flow rate corresponding to an interstitial velocity of vi=1.89±0.03ftday(-1), 0.1 pore volumes were injected over the course of each image acquisition, a four-fold reduction when compared to a fully-sampled RARE acquisition. Finally, the 3D CS-RARE technique has been used to image the drainage of dodecane into the water-saturated rock in which the dynamics of the coalescence of discrete clusters of the non-wetting phase are clearly observed. The enhancement in the temporal resolution that has been achieved using the CS-RARE approach enables dynamic transport processes pertinent to laboratory core floods to be investigated in 3D on a time-scale and with a spatial resolution that, until now, has not been possible.Royal Dutch Shell plc; Engineering and Physical Sciences Research Council (EP/K039318/1, EP/M00483X/1)This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jmr.2016.07.01
    corecore