119 research outputs found

    Brushless dc motor and controller Final report, Sep. 1969 - Mar. 1970

    Get PDF
    Design, fabrication, and functional testing of brushless dc motors with split winding connected in series or paralle

    Brushless DC motor with dual windings

    Get PDF
    Motor has high starting torque and high running speeds. Control system consists of Hall effect generator/resolver and associated electronic amplifiers and switches. Motor operation is described

    Thermodynamically consistent description of the hydrodynamics of free surfaces covered by insoluble surfactants of high concentration

    Get PDF
    In this paper we propose several models that describe the dynamics of liquid films which are covered by a high concentration layer of insoluble surfactant. First, we briefly review the 'classical' hydrodynamic form of the coupled evolution equations for the film height and surfactant concentration that are well established for small concentrations. Then we re-formulate the basic model as a gradient dynamics based on an underlying free energy functional that accounts for wettability and capillarity. Based on this re-formulation in the framework of nonequilibrium thermodynamics, we propose extensions of the basic hydrodynamic model that account for (i) nonlinear equations of state, (ii) surfactant-dependent wettability, (iii) surfactant phase transitions, and (iv) substrate-mediated condensation. In passing, we discuss important differences to most of the models found in the literature.Comment: 31 pages, 2 figure

    Sfermion Precision Measurements at a Linear Collider

    Get PDF
    At future e+- e- linear colliders, the event rates and clean signals of scalar fermion production - in particular for the scalar leptons - allow very precise measurements of their masses and couplings and the determination of their quantum numbers. Various methods are proposed for extracting these parameters from the data at the sfermion thresholds and in the continuum. At the same time, NLO radiative corrections and non-zero width effects have been calculated in order to match the experimental accuracy. The substantial mixing expected for the third generation sfermions opens up additional opportunities. Techniques are presented for determining potential CP-violating phases and for extracting tan(beta) from the stau sector, in particular at high values. The consequences of possible large mass differences in the stop and sbottom system are explored in dedicated analyses.Comment: Expanded version of contributions to the proceedings of ICHEP'02 (Amsterdam) and LCWS 2002 (Jeju Island

    Slepton pair production in the POWHEG BOX

    Full text link
    We present an implementation for slepton pair production at hadron colliders in the POWHEG BOX, a framework for combining next-to-leading order QCD calculations with parton-shower Monte-Carlo programs. Our code provides a SUSY Les Houches Accord interface for setting the supersymmetric input parameters. Decays of the sleptons and parton-shower effects are simulated with PYTHIA. Focussing on a representative point in the supersymmetric parameter space we show results for kinematic distributions that can be observed experimentally. While next-to-leading order QCD corrections are sizable for all distributions, the parton shower affects the color-neutral particles only marginally. Pronounced parton-shower effects are found for jet distributions.Comment: 10 pages, 4 figure

    The R*-operation for Feynman graphs with generic numerators

    Get PDF
    Abstract The R *-operation by Chetyrkin, Tkachov, and Smirnov is a generalisation of the BPHZ R-operation, which subtracts both ultraviolet and infrared divergences of euclidean Feynman graphs with non-exceptional external momenta. It can be used to compute the divergent parts of such Feynman graphs from products of simpler Feynman graphs of lower loops. In this paper we extend the R *-operation to Feynman graphs with arbitrary numerators, including tensors. We also provide a novel way of defining infrared counterterms which closely resembles the definition of its ultraviolet counterpart. We further express both infrared and ultraviolet counterterms in terms of scaleless vacuum graphs with a logarithmic degree of divergence. By exploiting symmetries, integrand and integral relations, which the counterterms of scaleless vacuum graphs satisfy, we can vastly reduce their number and complexity. A FORM implementation of this method was used to compute the five loop beta function in QCD for a general gauge group. To illustrate the procedure, we compute the poles in the dimensional regulator of all top-level propagator graphs at five loops in four dimensional ϕ 3 theory

    Segregation of object and background motion in the retina

    Get PDF
    An important task in vision is to detect objects moving within a stationary scene. During normal viewing this is complicated by the presence of eye movements that continually scan the image across the retina, even during fixation. To detect moving objects, the brain must distinguish local motion within the scene from the global retinal image drift due to fixational eye movements. We have found that this process begins in the retina: a subset of retinal ganglion cells responds to motion in the receptive field centre, but only if the wider surround moves with a different trajectory. This selectivity for differential motion is independent of direction, and can be explained by a model of retinal circuitry that invokes pooling over nonlinear interneurons. The suppression by global image motion is probably mediated by polyaxonal, wide-field amacrine cells with transient responses. We show how a population of ganglion cells selective for differential motion can rapidly flag moving objects, and even segregate multiple moving objects
    corecore