34 research outputs found

    Intravaginal and Menstrual Practices among Women Working in Food and Recreational Facilities in Mwanza, Tanzania: Implications for Microbicide Trials

    Get PDF
    Intravaginal and menstrual practices may potentially influence results of trials of microbicides for HIV prevention through effects on the vaginal environment and on adherence to microbicide and placebo products. As part of the feasibility study for the Microbicides Development Programme Phase 3 trial of a vaginal microbicide in Mwanza, a variety of quantitative and qualitative methods were used to describe these practices, associations with behaviour and underlying social norms among women working in food and recreational facilities. Intravaginal cleansing by inserting fingers and either water alone or soap and water was thought necessary to remove “uchafu” (dirt), referring to vaginal secretions, including menstrual blood and post-coital discharge. Vaginal cleansing was carried out within 2 hours after 45% of sex acts. Sexual enhancement practices were less common. Intravaginal and menstrual practices and associated behaviours and demographic factors should be measured and monitored throughout microbicide trials to enable analyses of their impacts on microbicide effectiveness

    Human malarial disease: a consequence of inflammatory cytokine release

    Get PDF
    Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease

    Taxonomic Re-Investigation and Geochemical Characterization of Reid’s (1974) Species of Spiniferites from Holotype and Topotype Material

    Get PDF
    The genus Spiniferites currently encompasses 142 dinoflagellate cyst species. Some Spiniferites species are difficult to identify because of an incomplete or doubtful description, and/or substandard iconography. This study re-describes and re-illustrates the Spiniferites holotypes first described by Reid in 1974 Reid PC. 1974. Gonyaulacacean dinoflagellate cysts from the British Isles. Nova Hedwigia. 25:579–637. [Google Scholar]. It also discusses topotype material from surface sediments recovered from British estuaries, and attempts to provide further constraints on the classification of species in this genus using the geochemical characterization of their cyst walls. Reid described four new Spiniferites species: Spiniferites belerius, Spiniferites delicatus, Spiniferites elongatus and Spiniferites lazus. New photomicrographs are presented here for the holotypes of Spiniferites delicatus and Spiniferites elongatus, and additional morphological observations based on newly processed topotype material are given. The geochemical characterization of the Spiniferites cyst walls showed overall consistency with a carbohydrate-based dinosporin. However, variability in the dinosporins suggests that, in this genus, the cyst wall composition may be species-specific. Analysis of the characteristic spectral regions for unclassified Spiniferites species showed that, in some cases, it may be possible to constrain the likely species affinity using the cyst wall chemistry. However, in most cases, the morphologically unspeciated cysts did not show sufficient similarity to an identified species’ cyst wall chemistry to be more conclusive. This could either reflect an intermediate species that cannot be clearly characterized using morphology or dinosporin composition, or it represents a completely different species. In either case, both the morphological and geochemical evaluations highlight the difficulties in classifying species of this genus unequivocally

    Identification key for Pliocene and Quaternary Spiniferites taxa bearing intergonal processes based on observations from estuarine and coastal environments

    Get PDF
    The use of dinoflagellate cyst assemblages as a tool for palaeo-environmental reconstructions strongly relies on the robustness of cyst identification and existing information on the distribution of the different species. To this purpose, we propose a functional key for the identification of Pliocene and Quaternary Spiniferites bearing intergonal processes and depict the range of morphological variation of the different species on the basis of new observations from estuarine and coastal regions. Accordingly, the description of Spiniferites mirabilis is emended to include the new subspecies Spiniferites mirabilis subsp. serratus. We also report the occasional presence of intergonal processes in Spiniferites bentorii and Spiniferites belerius. This key aims to facilitate identification of this group of Spiniferites bearing intergonal processes and standardize cyst identification among researchers

    Energy Efficiency of Electrowinning

    No full text
    The winning of high purity metal from aqueous solutions through electrodeposition is the final processing recovery step for many nonferrous metals. Direct electrical current/voltage provides the necessary driving force to promote the necessary reactions at an industrially relevant rate. Energy, especially electrical, is often the highest cost for electrowinning operations. Therefore, energy efficiency is a paramount concern for modern facilities. This chapter discusses electrical energy consumption in aqueous electrowinning with a specific focus on cell voltage and current efficiency. It also presents potential improvements
    corecore