549 research outputs found

    Correlation, hierarchies, and networks in financial markets

    Full text link
    We discuss some methods to quantitatively investigate the properties of correlation matrices. Correlation matrices play an important role in portfolio optimization and in several other quantitative descriptions of asset price dynamics in financial markets. Specifically, we discuss how to define and obtain hierarchical trees, correlation based trees and networks from a correlation matrix. The hierarchical clustering and other procedures performed on the correlation matrix to detect statistically reliable aspects of the correlation matrix are seen as filtering procedures of the correlation matrix. We also discuss a method to associate a hierarchically nested factor model to a hierarchical tree obtained from a correlation matrix. The information retained in filtering procedures and its stability with respect to statistical fluctuations is quantified by using the Kullback-Leibler distance.Comment: 37 pages, 9 figures, 3 table

    Dynamics of fintech terms in news and blogs and specialization of companies of the fintech industry

    Get PDF
    We perform a large scale analysis of a list of fintech terms in (i) news and blogs in the English language and (ii) professional descriptions of companies operating in many countries. The occurrence and the co-occurrence of fintech terms and locutions show a progressive evolution of the list of fintech terms in a compact and coherent set of terms used worldwide to describe fintech business activities. By using methods of complex networks that are specifically designed to deal with heterogeneous systems, our analysis of a large set of professional descriptions of companies shows that companies having fintech terms in their description present over-expressions of specific attributes of country, municipality, and economic sector. By using the approach of statistically validated networks, we detect geographical and economic over-expressions of a set of companies related to the multi-industry, geographically, and economically distributed fintech movement

    Economic sector identification in a set of stocks traded at the New York Stock Exchange: a comparative analysis

    Get PDF
    We review some methods recently used in the literature to detect the existence of a certain degree of common behavior of stock returns belonging to the same economic sector. Specifically, we discuss methods based on random matrix theory and hierarchical clustering techniques. We apply these methods to a set of stocks traded at the New York Stock Exchange. The investigated time series are recorded at a daily time horizon. All the considered methods are able to detect economic information and the presence of clusters characterized by the economic sector of stocks. However, different methodologies provide different information about the considered set. Our comparative analysis suggests that the application of just a single method could not be able to extract all the economic information present in the correlation coefficient matrix of a set of stocks.Comment: 13 pages, 8 figures, 2 Table

    Sector identification in a set of stock return time series traded at the London Stock Exchange

    Full text link
    We compare some methods recently used in the literature to detect the existence of a certain degree of common behavior of stock returns belonging to the same economic sector. Specifically, we discuss methods based on random matrix theory and hierarchical clustering techniques. We apply these methods to a portfolio of stocks traded at the London Stock Exchange. The investigated time series are recorded both at a daily time horizon and at a 5-minute time horizon. The correlation coefficient matrix is very different at different time horizons confirming that more structured correlation coefficient matrices are observed for long time horizons. All the considered methods are able to detect economic information and the presence of clusters characterized by the economic sector of stocks. However different methods present a different degree of sensitivity with respect to different sectors. Our comparative analysis suggests that the application of just a single method could not be able to extract all the economic information present in the correlation coefficient matrix of a stock portfolio.Comment: 28 pages, 13 figures, 3 Tables. Proceedings of the conference on "Applications of Random Matrices to Economy and other Complex Systems", Krakow (Poland), May 25-28 2005. Submitted for pubblication to Acta Phys. Po

    Variety and Volatility in Financial Markets

    Full text link
    We study the price dynamics of stocks traded in a financial market by considering the statistical properties both of a single time series and of an ensemble of stocks traded simultaneously. We use the nn stocks traded in the New York Stock Exchange to form a statistical ensemble of daily stock returns. For each trading day of our database, we study the ensemble return distribution. We find that a typical ensemble return distribution exists in most of the trading days with the exception of crash and rally days and of the days subsequent to these extreme events. We analyze each ensemble return distribution by extracting its first two central moments. We observe that these moments are fluctuating in time and are stochastic processes themselves. We characterize the statistical properties of ensemble return distribution central moments by investigating their probability density functions and temporal correlation properties. In general, time-averaged and portfolio-averaged price returns have different statistical properties. We infer from these differences information about the relative strength of correlation between stocks and between different trading days. Lastly, we compare our empirical results with those predicted by the single-index model and we conclude that this simple model is unable to explain the statistical properties of the second moment of the ensemble return distribution.Comment: 10 pages, 11 figure

    Stock markets and quantum dynamics: a second quantized description

    Full text link
    In this paper we continue our descriptions of stock markets in terms of some non abelian operators which are used to describe the portfolio of the various traders and other {\em observable} quantities. After a first prototype model with only two traders, we discuss a more realistic model of market with an arbitrary number of traders. For both models we find approximated solutions for the time evolution of the portfolio of each trader. In particular, for the more realistic model, we use the {\em stochastic limit} approach and a {\em fixed point like} approximation

    Detecting informative higher-order interactions in statistically validated hypergraphs

    Get PDF
    Recent empirical evidence has shown that in many real-world systems, successfully represented as networks, interactions are not limited to dyads, but often involve three or more agents at a time. These data are better described by hypergraphs, where hyperlinks encode higher-order interactions among a group of nodes. In spite of the extensive literature on networks, detecting informative hyperlinks in real world hypergraphs is still an open problem. Here we propose an analytic approach to filter hypergraphs by identifying those hyperlinks that are over-expressed with respect to a random null hypothesis, and represent the most relevant higher-order connections. We apply our method to a class of synthetic benchmarks and to several datasets, showing that the method highlights hyperlinks that are more informative than those extracted with pairwise approaches. Our method provides a first way, to the best of our knowledge, to obtain statistically validated hypergraphs, separating informative connections from noisy ones

    Quantifying dynamics of the financial correlations

    Full text link
    A novel application of the correlation matrix formalism to study dynamics of the financial evolution is presented. This formalism allows to quantify the memory effects as well as some potential repeatable intradaily structures in the financial time-series. The present study is based on the high-frequency Deutsche Aktienindex (DAX) data over the time-period between November 1997 and December 1999 and demonstrates a power of the method. In this way two significant new aspects of the DAX evolution are identified: (i) the memory effects turn out to be sizably shorter than what the standard autocorrelation function analysis seems to indicate and (ii) there exist short term repeatable structures in fluctuations that are governed by a distinct dynamics. The former of these results may provide an argument in favour of the market efficiency while the later one may indicate origin of the difficulty in reaching a Gaussian limit, expected from the central limit theorem, in the distribution of returns on longer time-horizons.Comment: 10 pages, 7 PostScript figures, talk presented by the first Author at the NATO ARW on Econophysics, Prague, February 8-10, 2001; to be published in proceedings (Physica A

    Networks of equities in financial markets

    Full text link
    We review the recent approach of correlation based networks of financial equities. We investigate portfolio of stocks at different time horizons, financial indices and volatility time series and we show that meaningful economic information can be extracted from noise dressed correlation matrices. We show that the method can be used to falsify widespread market models by directly comparing the topological properties of networks of real and artificial markets.Comment: 9 pages, 8 figures. Accepted for publication in EPJ

    Simplified stock markets described by number operators

    Full text link
    In this paper we continue our systematic analysis of the operatorial approach previously proposed in an economical context and we discuss a {\em mixed} toy model of a simplified stock market, i.e. a model in which the price of the shares is given as an input. We deduce the time evolution of the portfolio of the various traders of the market, as well as of other {\em observable} quantities. As in a previous paper, we solve the equations of motion by means of a {\em fixed point like} approximation.Comment: Rep. on Math. Phys., in pres
    • …
    corecore