15 research outputs found

    Adaptive Algorithms and Collusion via Coupling

    Full text link
    We develop a theoretical model to study strategic interactions between adaptive learning algorithms. Applying continuous-time techniques, we uncover the mechanism responsible for collusion between Artificial Intelligence algorithms documented by recent experimental evidence. We show that spontaneous coupling between the algorithms' estimates leads to periodic coordination on actions that are more profitable than static Nash equilibria. We provide a sufficient condition under which this coupling is guaranteed to disappear, and algorithms learn to play undominated strategies. We apply our results to interpret and complement experimental findings in the literature and to the design of learning-robust strategy-proof mechanisms. We show that ex-post feedback provision guarantees robustness to the presence of learning agents. We fully characterize the optimal learning-robust mechanisms: they are menu mechanisms.Comment: 57 pages, 13 figure

    Bacterial DNAemia is associated with serum zonulin levels in older subjects

    Get PDF
    The increased presence of bacteria in blood is a plausible contributing factor in the development and progression of aging-associated diseases. In this context, we performed the quantification and the taxonomic profiling of the bacterial DNA in blood samples collected from forty-three older subjects enrolled in a nursing home. Quantitative PCR targeting the 16S rRNA gene revealed that all samples contained detectable amounts of bacterial DNA with a concentration that varied considerably between subjects. Correlation analyses revealed that the bacterial DNAemia (expressed as concentration of 16S rRNA gene copies in blood) significantly associated with the serum levels of zonulin, a marker of intestinal permeability. This result was confirmed by the analysis of a second set of blood samples collected from the same subjects. 16S rRNA gene profiling revealed that most of the bacterial DNA detected in blood was ascribable to the phylum Proteobacteria with a predominance of the genus Pseudomonas. Several control samples were also analyzed to assess the influence of contaminant bacterial DNA potentially originating from reagents and materials. The data reported here suggest that para-cellular permeability of epithelial (and, potentially, endothelial) cell layers may play an important role in bacterial migration into the bloodstream. Bacterial DNAemia is likely to impact on several aspects of host physiology and could underpin the development and prognosis of various diseases in older subjects

    Appunti di Calcolo delle Variazioni

    No full text
    Queste note sono una versione espansa delle lezioni del corso di calcolo delle variazioni tenute da Carlo Mantegazza al Dipartimento di Matematica e Applicazioni “Renato Caccioppoli” dell’Università Federico II di Napoli. L’esposizione del soggetto, che è quasi esclusivamente relativo ai problemi unidimensionali, segue in un qualche senso lo sviluppo “storico” del calcolo delle variazioni, dai metodi classici ai metodi diretti di Leonida Tonelli, con un accenno finale ai problemi multidimensionali, esaminando il caso più semplice dell’integrale di Dirichlet

    Anti-Glycation Properties of Zinc-Enriched <i>Arthrospira platensis</i> (Spirulina) Contribute to Prevention of Metaflammation in a Diet-Induced Obese Mouse Model

    No full text
    Advanced glycation end products (AGEs) exert a key pathogenic role in the development of obesity and insulin resistance. Thanks to its abundance in bioactive compounds, the microalga Arthrospira platensis (spirulina, SP) is proposed as a nutritional supplement. Here, we investigated the potential anti-glycating properties of SP enriched with zinc (Zn-SP) and the following impact on diet-induced metabolic derangements. Thirty male C57Bl6 mice were fed a standard diet (SD) or a high-fat high-sugar diet (HFHS) for 12 weeks, and a subgroup of HFHS mice received 350 mg/kg Zn-SP three times a week. A HFHS diet induced obesity and glucose intolerance and increased plasma levels of pro-inflammatory cytokines and transaminases. Zn-SP administration restored glucose homeostasis and reduced hepatic dysfunction and systemic inflammation. In the liver of HFHS mice, a robust accumulation of AGEs was detected, paralleled by increased expression of the main AGE receptor (RAGE) and depletion of glyoxalase-1, whereas Zn-SP administration efficiently prevented these alterations reducing local pro-inflammatory responses. 16S rRNA gene profiling of feces and ileum content revealed altered bacterial community structure in HFHS mice compared to both SD and HFHS + Zn-SP groups. Overall, our study demonstrates relevant anti-glycation properties of Zn-SP which contribute to preventing AGE production and/or stimulate AGE detoxification, leading to the improvement of diet-related dysbiosis and metabolic derangements

    Fecal short-chain fatty acids in non-constipated irritable bowel syndrome: a potential clinically relevant stratification factor based on catabotyping analysis

    No full text
    ABSTRACTThe gut microbiota is believed to be a critical factor in the pathogenesis of IBS, and its metabolic byproducts, such as short-chain fatty acids (SCFAs), are known to influence gut function and host health. Despite this, the precise role of SCFAs in IBS remains a topic of debate. In this study, we examined the bacterial community structure by 16S rRNA gene profiling and SCFA levels by UPLC-MS/MS in fecal samples from healthy controls (HC; n = 100) and non-constipated patients (IBS-D and IBS-M; NC-IBS; n = 240) enrolled in 19 hospitals in Italy. Our findings suggest a significant difference between the fecal microbiomes of NC-IBS patients and HC subjects, with HC exhibiting higher intra-sample biodiversity. Furthermore, we were able to classify non-constipated patients into two distinct subgroups based on their fecal SCFA levels (fecal catabotype “high” and “low”), each characterized by unique taxonomic bacterial signatures. Our results suggest that the fecal catabotype with higher SCFA levels may represent a distinct clinical phenotype of IBS that could have implications for its diagnosis and treatment. This study provides a new perspective on the intricate relationship between the gut microbiome and bowel symptoms in IBS, underscoring the importance of personalized strategies for its management
    corecore