8 research outputs found

    The amyloid : structure, properties and application

    No full text
    Protein aggregation, leading to the formation and depositions of amyloids, is a cause for a number of diseases such as Alzheimer’s and Creutzfeld-Jacob’s disease, systemic amyloidoses, type II diabetes and others . More than 20 proteins are associated with protein misfolding diseases and even a larger number of proteins can self-assemble into amyloid in vitro. Relating structural and functional properties of amyloid is of particular interest, as this will lead to the identification of the main factors and mechanisms involved in the process of protein misfolding and aggregation; consequently, this will provide a basis for developing new strategies to treat protein misfolding diseases. The aim of the thesis is to investigate structural aspects of amyloid formation and relate that to the functional properties of amyloid. The first paper describes the amyloid formation of equine lysozyme (EL). We have demonstrated that EL enters an amyloid forming pathways under conditions where the molten globule state is populated. We have found that the morphology of the amyloids depend on the calcium-binding to lysozyme, specifically the holo-protein assembles into short, linear protofilaments, while the apo-EL forms ring-shaped structures. The morphology of EL amyloid significantly differs from the amyloid fibrils of human and hen lysozymes. We have suggested that the stable alpha-helical core of EL, which remains structured in the molten globule intermediate, may obstruct the formation of fibrilar interface and therefore leads to assembly of short, curly fibrils and rings.In the second paper, we describe the cytotoxicity of EL amyloids. We have analysed the amyloid intermediates on the pathway towards amyloid fibrils. The sizes of amyloid oligomers were determined by atomic force microscopy (AFM) and the formation of cross-beta sheet was shown by thioflavin T (ThT) binding. The toxicity studies show that the oligomers formed during amyloid growth phase are toxic to a range of cell lines and cultures and the toxicity is size-dependant.The last manuscript describes a novel method for manufacturing of silver nanowires by the biotemplating using amyloid fibrils. The amyloid assembled from an abundant and cheap hen egg white lysozyme was used as a scaffold for casting ultrathin silver nanowires. We have manufactured nanowires with a diameter of 1.0-2.5 nm and up to 2 micrometers in length. Up to date, it is the thinnest silver nanowires produced by using biotemplating and at least one order of magnitude thinner than nanowires manufactured by chemical synthesis

    Quantifying stickiness: thermodynamic characterization of intramolecular domain interactions to guide the design of förster resonance energy transfer sensors

    No full text
    The introduction of weak, hydrophobic interactions between fluorescent protein domains (FPs) can substantially increase the dynamic range (DR) of Forster resonance energy transfer (FRET)-based sensor systems. Here we report a comprehensive thermodynamic characterization of the stability of a range of self-associating FRET pairs. A new method is introduced that allows direct quantification of the stability of weak FP interactions by monitoring intramolecular complex formation as a function of urea concentration. The commonly used S208F mutation stabilized intramolecular FP complex formation by 2.0 kCal/mol when studied in an enhanced cyan FP (ECFP)-linker-enhanced yellow FP (EYFP) fusion protein, whereas a significantly weaker interaction was observed for the homologous Cerulean/Citrine FRET pair (Delta G(o-c)(0) = 0.62 kCal/mol). The latter effect could be attributed to two mutations in Cerulean (Y145A and H148D) that destabilize complex formation with Citrine. Systematic analysis of the contribution of residues 125 and 127 at the dimerization interface in mOrange-linker-mCherry fusion proteins yielded a toolbox of new mOrange-mCherry combinations that allowed tuning of their intramolecular interaction from very weak (Delta G(o-c)(0) = -0.39 kCal/mol) to relatively stable (Delta G(o-c)(0) = 2.2 kCal/mol). The effects of these mutations were also studied by monitoring homodimerization of mCherry variants using fluorescence anisotropy. These mutations affected intramolecular and intermolecular domain interactions similarly, although FP interactions were found to be stronger in the latter. The knowledge thus obtained allowed successful construction of a red-shifted variant of the bile acid FRET sensor BAS-1 by replacement of the self-associating Cerulean-Citrine pair by mOrange-mCherry variants with a similar intramolecular affinity. Our findings thus allow a better understanding of the subtle but important role of intramolecular domain interactions in current FRET sensors and help guide the construction of new sensors using modular design strategie

    Comprehensive approach for identification of functional FCGR2C alleles resulting in protein expression as a determinant for predicting predisposition to autoimmunity

    No full text
    Abstract The balance of activating and inhibitory signals from the low affinity Fc gamma receptors modulates immune responses triggered by IgG antibody‐immune complexes. In homeostasis, this leads to antigen clearance, while in autoimmune diseases to unwanted immune response. Besides the activating receptors FcɣRIIa, FcɣRIIIa, and the inhibitory FcɣRIIb receptor, a third activating receptor, FcɣRIIc, was shown to be expressed on several immune cell types, however, only in the presence of a functional FCGR2C‐ORF allele. FcɣRIIc expression is associated with autoimmune diseases such as idiopathic thrombocytopenic purpura, systemic lupus erythematosus or systemic sclerosis. Thus, the determination of the functional FCGR2C gene resulting in protein expression on immune cells becomes highly relevant, particularly in the context of unwanted immune responses through inadvertent FcɣRIIc activation by molecules targeting stimulation of the inhibitory receptor FcɣRIIb, currently pursued by several pharmaceutical companies. The high degree of homology within the FCGR2/3 gene cluster complicates development of an accurate method for identification of FcɣRIIc expression. Here we describe a comprehensive approach to characterize genetic status of the FCGR2C gene locus consisting of cDNA sequencing, SNaPshot genotyping and low‐coverage next‐generation sequencing. This might enable Mendelian randomization hypothesis testing across autoimmune diseases to personalize therapies and enhance treatment outcomes

    Templating S100A9 amyloids on Aβ fibrillar surfaces revealed by charge detection mass spectrometry, microscopy, kinetic and microfluidic analyses.

    No full text
    The mechanism of amyloid co-aggregation and its nucleation process are not fully understood in spite of extensive studies. Deciphering the interactions between proinflammatory S100A9 protein and Aβ42 peptide in Alzheimer's disease is fundamental since inflammation plays a central role in the disease onset. Here we use innovative charge detection mass spectrometry (CDMS) together with biophysical techniques to provide mechanistic insight into the co-aggregation process and differentiate amyloid complexes at a single particle level. Combination of mass and charge distributions of amyloids together with reconstruction of the differences between them and detailed microscopy reveals that co-aggregation involves templating of S100A9 fibrils on the surface of Aβ42 amyloids. Kinetic analysis further corroborates that the surfaces available for the Aβ42 secondary nucleation are diminished due to the coating by S100A9 amyloids, while the binding of S100A9 to Aβ42 fibrils is validated by a microfluidic assay. We demonstrate that synergy between CDMS, microscopy, kinetic and microfluidic analyses opens new directions in interdisciplinary research

    When to Extend Monitoring of Anti-drug Antibodies for High-risk Biotherapeutics in Clinical Trials: an Opinion from the European Immunogenicity Platform.

    No full text
    The determination of a tailored anti-drug antibody (ADA) testing strategy is based on the immunogenicity risk assessment to allow a correlation of ADAs with changes to pharmacokinetics, efficacy, and safety. The clinical impact of ADA formation refines the immunogenicity risk assessment and defines appropriate risk mitigation strategies. Health agencies request for high-risk biotherapeutics to extend ADA monitoring for patients that developed an ADA response to the drug until ADAs return to baseline levels. However, there is no common understanding in which cases an extension of ADA follow-up sampling beyond the end of study (EOS) defined in the clinical study protocol is required. Here, the Immunogenicity Strategy Working Group of the European Immunogenicity Platform (EIP) provides recommendations on requirements for an extension of ADA follow-up sampling in clinical studies where there is a high risk of serious consequences from ADAs. The importance of ADA evaluation during a treatment-free period is recognized but the decision whether to extend ADA monitoring at a predefined EOS should be based on evaluation of ADA data in the context of corresponding clinical signals. If the clinical data set shows that safety consequences are minor, mitigated, or resolved, further ADA monitoring may not be required despite potentially detectable ADAs above baseline. Extended ADA monitoring should be centered on individual patient benefit
    corecore