210 research outputs found

    A Constraint on cAMP Signaling

    Get PDF
    AbstractStudies in invertebrates and vertebrates have demonstrated a critical role for cAMP signaling and adenylyl cyclase (AC) activity in learning and memory. In this issue of Neuron, Pineda et al. show that in the hippocampus, reduction of AC activity via the inhibitory G protein Gi is critical for memory formation, suggesting that a balance of inhibitory and stimulatory regulators of AC is required for optimal cAMP signaling

    Dendritic Spine Loss and Synaptic Alterations in Alzheimer's Disease

    Get PDF
    Dendritic spines are tiny protrusions along dendrites, which constitute major postsynaptic sites for excitatory synaptic transmission. These spines are highly motile and can undergo remodeling even in the adult nervous system. Spine remodeling and the formation of new synapses are activity-dependent processes that provide a basis for memory formation. A loss or alteration of these structures has been described in patients with neurodegenerative disorders such as Alzheimer's disease (AD), and in mouse models for these disorders. Such alteration is thought to be responsible for cognitive deficits long before or even in the absence of neuronal loss, but the underlying mechanisms are poorly understood. This review will describe recent findings and discoveries on the loss or alteration of dendritic spines induced by the amyloid β (Aβ) peptide in the context of A

    Towards a better understanding of nuclear processes based on proteomics

    Get PDF
    The complex structural and functional organisation of the brain warrants the application of high-throughput approaches to study its functional alterations in physiological and pathological conditions. Such approaches have greatly benefited from advances in proteomics and genomics, and from their combination with computational modelling. They have been particularly instrumental for the analysis of processes such as the post-translational modification (PTM) of proteins, a critical biological process in the nervous system that remains not well studied. Protein PTMs are dynamic covalent marks that can be induced by activity and allow the maintenance of a trace of this activity. In the nucleus, they can modulate histone proteins and the components of the transcriptional machinery, and thereby contribute to regulating gene expression. PTMs do however need to be tightly controlled for proper chromatin functions. This review provides a synopsis of methods available to study PTMs and protein expression based on high-throughput mass spectrometry (MS), and covers basic concepts of traditional ‘shot-gun'-based MS. It describes classical and emerging proteomic approaches such as multiple reaction monitoring and electron transfer dissociation, and their application to the analyses of nuclear processes in the brai

    Inter- and transgenerational inheritance of behavioral phenotypes

    Full text link
    Adult animal behaviors are determined by complex and dynamic changes in gene expression in different brain regions and are influenced by life experiences and environmental exposures. These stimuli affect gene expression through intricate mechanisms of regulation that largely implicate epigenetic factors, such as, DNA methylation, histone post-translational modifications, and non-coding RNAs (ncRNAs). Through these molecular pathways, some of the behavioral phenotypes associated with life experiences can be stably transmitted to descendants, sometimes across several generations. Rodent studies indicate that parental stressful and traumatic experiences can lead to behavioral despair, risk-taking behaviors, altered sociability and atypical responses to stressful stimuli in the offspring, whereas parental environmental enrichment has been associated with improved cognition and stress resilience in the offspring. Similar observations have been made in humans; children and grandchildren of genocide survivors show increased psychopathology and emotional disturbances. At the molecular level, changes in germline ncRNAs have been identified as likely vectors of transmission in rodents. The mechanisms linking behavioral stimuli to the germline, and factors responsible for these changes and their persistence across generations remain, however, largely unidentified

    Neural functions of calcineurin in synaptic plasticity and memory

    Full text link
    Major brain functions depend on neuronal processes that favor the plasticity of neuronal circuits while at the same time maintaining their stability. The mechanisms that regulate brain plasticity are complex and engage multiple cascades of molecular components that modulate synaptic efficacy. Protein kinases (PKs) and phosphatases (PPs) are among the most important of these components that act as positive and negative regulators of neuronal signaling and plasticity, respectively. In these cascades, the PP protein phosphatase 2B or calcineurin (CaN) is of particular interest because it is the only Ca(2+)-activated PP in the brain and a major regulator of key proteins essential for synaptic transmission and neuronal excitability. This review describes the primary properties of CaN and illustrates its functions and modes of action by focusing on several representative targets, in particular glutamate receptors, striatal enriched protein phosphatase (STEP), and neuromodulin (GAP43), and their functional significance for synaptic plasticity and memory

    High Efficiency RNA Extraction From Sperm Cells Using Guanidinium Thiocyanate Supplemented With Tris(2-Carboxyethyl)Phosphine

    Full text link
    The extraction of high-quality ribonucleic acid (RNA) from tissues and cells is a key step in many biological assays. Guanidinium thiocyanate-phenol-chloroform (AGPC) is a widely used and efficient method to obtain pure RNA from most tissues and cells. However, it is not efficient with some cells like sperm cells because they are resistant to chaotropic lysis solutions containing guanidinium thiocyanate such as Buffer RLT+ and Trizol. Here, we show that disulfide bonds are responsible for the chemical resistance of sperm cells to RNA extraction reagents. We show that while β-mercaptoethanol (βME) can increase sperm lysis in Buffer RLT+, it has no effect in Trizol and leaves sperm cells intact. We measured the reduction of disulfide bonds in 2,2′-dithiodipyridine (DTDP) and observed that βME has a pH-dependent activity in chaotropic solutions, suggesting that pH is a limiting factor. We identified tris(2-carboxyethyl)phosphine (TCEP) as an efficient lysis enhancer of AGPC solutions that can retain reducing activity even at acidic pH. Trizol supplemented with TCEP allows the complete and rapid lysis of sperm cells, increasing RNA yield by 100-fold and resulting in RNA with optimal quality for reverse transcription and polymerase chain reaction. Our findings highlight the importance of efficient cell lysis and extraction of various macromolecules for bulk and single-cell assays, and can be applied to other lysis-resistant cells and vesicles, thereby optimizing the amount of required starting material and animals

    Inheritable Effect of Unpredictable Maternal Separation on Behavioral Responses in Mice

    Get PDF
    The long-term impact of early stress on behavior and emotions is well documented in humans, and can be modeled in experimental animals. In mice, maternal separation during early postnatal development induces poor and disorganized maternal care, and results in behavioral deficits that persist through adulthood. Here, we examined the long-term effect of unpredictable maternal separation combined with maternal stress on behavior and its transmissibility. We report that unpredictable maternal separation from birth to postnatal day 14 in C57Bl/6J mice has mild behavioral effects in the animals when adult, but that its combination with maternal stress exacerbates this effect. Further, the behavioral deficits are transmitted to the following generation through females, an effect that is independent of maternal care and is not affected by cross-fostering. The combined manipulation does not alter basic components of the hypothalamic–pituitary–adrenal axis but decreases the expression of the corticotropin releasing factor receptor 2 (CRFR2) in several nuclei of the amygdala and the hypothalamus in the brain of maternal-separated females. These results suggest a non-genomic mode of transmission of the impact of early stress in mice

    Protein Phosphatase 1 (PP1) Is a Post-Translational Regulator of the Mammalian Circadian Clock

    Get PDF
    Circadian clocks coordinate the timing of important biological processes. Interconnected transcriptional and post-translational feedback loops based on a set of clock genes generate and maintain these rhythms with a period of about 24 hours. Many clock proteins undergo circadian cycles of post-translational modifications. Among these modifications, protein phosphorylation plays an important role in regulating activity, stability and intracellular localization of clock components. Several protein kinases were characterized as regulators of the circadian clock. However, the function of protein phosphatases, which balance phosphorylation events, in the mammalian clock mechanism is less well understood. Here, we identify protein phosphatase 1 (PP1) as regulator of period and light-induced resetting of the mammalian circadian clock. Down-regulation of PP1 activity in cells by RNA interference and in vivo by expression of a specific inhibitor in the brain of mice tended to lengthen circadian period. Moreover, reduction of PP1 activity in the brain altered light-mediated clock resetting behavior in mice, enhancing the phase shifts in either direction. At the molecular level, diminished PP1 activity increased nuclear accumulation of the clock component PER2 in neurons. Hence, PP1, may reduce PER2 phosphorylation thereby influencing nuclear localization of this protein. This may at least partially influence period and phase shifting properties of the mammalian circadian clock

    Single-Cell Multiomics Techniques: From Conception to Applications

    Full text link
    Recent advances in methods for single-cell analyses and barcoding strategies have led to considerable progress in research. The development of multiplexed assays offers the possibility to conduct parallel analyses of multiple factors and processes for comprehensive characterization of cellular and molecular states in health and disease. These technologies have expanded extremely rapidly in the past years and constantly evolve and provide better specificity, precision and resolution. This review summarizes recent progress in single-cell multiomics approaches, and focuses, in particular, on the most innovative techniques that integrate genome, epigenome and transcriptome profiling. It describes the methodologies, discusses their advantages and limitations, and explains how they have been applied to studies on cell heterogeneity and differentiation, and epigenetic reprogramming. Keywords: chromatin accessibility; epigenomics; genomics; multiomics; single-cell; transcriptomic

    Highly efficient control of iron-containing nitrile hydratases by stoichiometric amounts of nitric oxide and light

    Get PDF
    AbstractThe reaction of two iron-containing nitrile hydratases (NHase) with NO has been studied: NHase from Rhodococcus sp. R312, which is probably similar to the photosensitive N771 NHase, and the new NHase from Comamonas testosteroni NI1 whose aminoacid sequence is quite different from those of BR312 and N771 NHases. Both enzymes are equally inactivated after addition of stoichiometric amounts of NO added as an anaerobic solution or produced in situ under physiological conditions by a rat brain NO-synthase. Both enzymes are reactivated by photoirradiation, and two cycles of NO inactivation/photoactivation can be performed without significant loss of activity. Both iron-containing NHases have a high affinity for NO, similar to that of methemoglobin
    • …
    corecore