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Abstract Dendritic spines are tiny protrusions along den-
drites, which constitute major postsynaptic sites for excitatory
synaptic transmission. These spines are highly motile and can
undergo remodeling even in the adult nervous system. Spine
remodeling and the formation of new synapses are activity-
dependent processes that provide a basis for memory
formation. A loss or alteration of these structures has been
described in patients with neurodegenerative disorders such as
Alzheimer’s disease (AD), and in mouse models for these
disorders. Such alteration is thought to be responsible for
cognitive deficits long before or even in the absence of
neuronal loss, but the underlying mechanisms are poorly
understood. This review will describe recent findings and
discoveries on the loss or alteration of dendritic spines
induced by the amyloid β (Aβ) peptide in the context of AD.
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Dendritic Spines: Sites for Excitatory Synaptic
Transmission

Although Camillo Golgi (1843–1926) initially thought that
the tiny thorn-like protrusions observed on dendrites after
silver impregnation were staining artifacts, follow-up
studies by Santiago Ramón y Cajal (1852–1934) demon-
strated that these protrusions are genuine structures that
constitute dendritic spines [1, 2]. It is now widely accepted
that dendritic spines are anatomical specializations on
neuronal cells that form distinct compartments that isolate
input from different synapses and are essential for excitatory
synaptic transmission. Several types of dendritic spines with
different shapes (stubby, thin, or mushroom-shaped), volumes
(0.001–1 mm3), and contents (may contain organelles such
as smooth endoplasmic reticulum and polyribosomes) have
been identified [3]. These differences raise the question of
whether spines have distinct functions, a question that is
currently the topic of intense research. Modern microscopy
such as two-photon laser scanning microscopy (2-PLSM [4];
for a review on applications in neuroscience, see [5]) has
been extremely useful to address this question and allowed
the imaging of dendritic spines in vivo. Studies using
2-PLSM provided compelling evidence that spines are
plastic and undergo remodeling upon synaptic activity [6–
9] (for a review, see [10]). Thus, combined in vivo 2-PLSM
and ultrastructural analysis by electron microscopy showed
the existence of two main types of spines: transient spines,
which tend to be thin and small, and persistent spines, which
are usually larger [11]. Spines were shown to undergo
experience-dependent growth in the barrel cortex upon novel
sensory experience induced by whisker trimming in rat.
Spine growth was preceded by synapse formation and newly
formed spines increased in volume as they became stable
[12, 13]. Such change in size implies functional alterations
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because the content in postsynaptic density (PSD) proteins
and AMPA receptors of spines is modulated by spine head
volume [14, 15]. However, the extent and impact of the
functional consequences remain undefined, but may be a
prerequisite for learning and memory processes.

Changes in the number of dendritic spines, be it new
formation or elimination [16, 17], depend on the actin
cytoskeleton (reviewed in [18, 19]). Various in vitro studies
have examined the signaling pathways leading to remodeling
of the cytoskeleton. Similar to most signaling cascades, these
pathways are highly complex and rely on activity-dependent
interactions of postsynaptic proteins and on actin polymer-
ization and depolymerization (for a recent review about
synaptic control of dendritic architecture, see [20]). Of
special interest in the field of Alzheimer’s disease (AD) is
the regulation of actin dynamics by ionotropic glutamate
receptors such as AMPA and NMDA receptors, as amyloid
β peptide (Aβ) is speculated to exert its influence via these
receptors (see the “Aβ-induced disturbance of synaptic
signaling” and “Aβ-induced disruption of the cytoskeletal
network” sections).

Synaptic Alterations in AD

AD is the most common form of dementia that causes
progressive loss of cognitive and intellectual functions. The
important role of Aβ in the course of AD and its deposition
in the brain as β-amyloid plaques is now widely recognized
and was demonstrated by numerous in vitro and in vivo
studies (for a review, see [21]). However, a direct link
between the amount of β-amyloid plaque deposits and
behavioral symptoms has not been clearly demonstrated in
transgenic mouse models of AD or in patients. This led to
the hypothesis that smaller Aβ assemblies commonly
known as Aβ oligomers or protofibrils, which are formed
before β-amyloid fibrils, may be involved in the pathology.
Several studies have now provided evidence that small Aβ
assemblies might indeed be the main neurotoxic species in
AD (for recent reviews on the role of Aβ oligomers in AD,
see [22, 23]). But despite intense research, the mechanisms
of action of Aβ oligomers remain somehow elusive. Better
knowledge of these mechanisms and of the processes
underlying the devastating deterioration of memory in AD
patients is crucial for the development of potential therapies.
Thus, the question of how Aβ oligomers influence and
disturb signaling pathways involved in learning and memory
is currently of high interest in the field. As cognitive deficits
in animal models of AD can occur before or even in the
absence of neuronal degeneration, it has been hypothesized
that synapses rather than neurons are the first structures to be
affected by exposure to toxic Aβ oligomers. This review will
discuss recent findings suggesting that disturbance of

synaptic signaling and loss or alteration of dendritic spines
might be one of the first signs of AD pathology.

Synaptic Loss in AD Patients

The presence ofβ-amyloid plaques and tau pathology are the
main criteria for a postmortem diagnosis of AD. The large
size of single β-amyloid plaques (up to 100 μm in diameter)
and the availability of simple staining techniques have
allowed correlative studies of the number of β-amyloid
plaques and the severity of premortem cognitive deficits.
However, many of these studies revealed little or no
correlation. For instance, Terry et al. [24] showed that
synapse loss provides a much better indicator for cognitive
impairment than β-amyloid plaque burden (for extensive
reviews on this topic, see [25–27]). Additional postmortem
studies using quantitative electron microscopy (EM) and
stereological sampling in mild cognitive impairment (MCI)
and early-to-mild AD patients confirmed that synapse loss
is an early structural correlate in the process of AD [28, 29].
Biochemical analyses further showed that several presyn-
aptic and postsynaptic proteins are downregulated in the
brain of AD patients, in particular synaptophysin, a
presynaptic vesicle membrane protein (reviewed in [30]),
as well as synaptic membrane and postsynaptic proteins
such as for instance synaptobrevin and synaptopodin [31,
32], suggesting substantial synaptic alterations.

Dendritic Spine Abnormalities in Transgenic Mouse
Models of AD

Given the importance of synaptic loss in AD patients,
several transgenic mouse models of AD have been analyzed
for dendritic spine anomalies and synaptic loss. These
analyses ranged from a simple determination of the level of
synaptophysin and other presynaptic and postsynaptic
markers, such as for instance PSD95 in brain slices by
immunohistochemical staining, to more elaborate measures,
such as a counting of dendritic spines in Golgi stained
neurons, or the analysis of spine morphology and dynamics
by EM or in vivo 2-PLSM. The ensemble of these analyses
has provided consistent evidence that, despite differences in
Aβ accumulation in the various transgenic mouse models
analyzed, synaptic loss occurs consistently in an age-
dependent manner in these models. The question of
whether such loss occurs before β-amyloid plaque deposi-
tion or not, however, remains controversial. In line with the
proposed toxic effect of small Aβ assemblies, a significant
reduction in spine density was reported in Tg2576 and
PDAPP mice long before β-amyloid plaque deposition can
be detected [33–35]. Yet a study by Spires-Jones et al.
reported normal spine density before β-amyloid plaque
deposition in the same Tg2576 mouse model [36], possibly
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because of methodological differences and due to the fact
that different brain areas were analyzed. Although smaller
Aβ assemblies seem to have toxic effects on spines, additional
detrimental effects on dendritic morphology caused by β-
amyloid plaques cannot be excluded. Indeed, recent studies in
Tg2576 and PSAPP AD mouse models showed a spatial
correlation between dendritic abnormalities such as spine loss
and β-amyloid deposits [37–40] and increased spine elimi-
nation in the immediate vicinity of β-amyloid plaques [36].
However, Spires-Jones et al. also described reduced spine
density and plasticity less close to β-amyloid plaques, and
an increase in aspiny dendrites in young transgenic mice,
indicating that the detrimental effects might still be partly
because of soluble Aβ. Additional evidence that soluble
rather than deposited Aβ is the culprit for synaptic loss has
been provided by other groups, reporting synaptic loss in
aged plaque-bearing transgenic mice even in regions devoid
of extracellular Aβ deposits [39, 41–44]. It should be noted
that, in humans, the pathological events leading to AD are by
far more complex than that modeled in animals. Thus,
besides β-amyloid plaques and Aβ oligomers, neurofibril-
lary tangles formed from hyperphosphorylated protein tau
significantly contribute to the disease and may also
participate in synaptic loss. Furthermore, mitochondrial
dysfunction has been shown to play an important role in
AD pathology (for a recent review, see [45]). Besides an
increase in oxidative stress, such mitochondrial alteration
might also affect the function and plasticity of spines, as
dendritic mitochondrial contributions are essential but
limited for the support of synapses [46].

Molecular Mechanisms I: Aβ-induced Disturbance
of Synaptic Signaling

Studies on changes in dendritic spine in AD models described
so far have addressed morphological and biochemical alter-
ations, but these changes have also been shown to have strong
functional consequences. Early disturbance in synaptic
processes involved in learning and memory have been
reported in several transgenic mouse models (for recent
extensive reviews, see [22, 23, 47, 48]). Electrophysiological
measurements of long-term potentiation (LTP), a mechanistic
model of synaptic strength and plasticity, showed that Aβ
oligomers can disrupt or disturb these molecular processes
[49–54]. Several reports further demonstrated that infusion
of small Aβ assemblies directly into the brain can rapidly
disrupt learned behavior and impair cognitive functions but
does not lead to any permanent neurological deficit in animal
models [55, 56]. These studies suggest a direct negative
effect of Aβ oligomers on synaptic signaling, which precise
mechanisms remain not fully understood but have recently
been further clarified.

Aβ Oligomers Affect the Number and Functions
of Neurotransmitter Receptors

Although disturbances of synaptic signaling may result
from a general disruption of the membrane provoked by the
formation of pores by Aβ [57], growing evidence indicates
a direct interaction of Aβ with postsynaptic receptors such
as NMDA, AMPA, or α-7 nicotinic acetylcholine (nACh)
receptors. Using a preparation of soluble Aβ oligomers
known as ADDLs, Klein et al. showed that Aβ oligomers
specifically target excitatory synapses containing NMDA
receptors in hippocampal neurons [58, 59]. Continued
exposure to ADDLs altered spine morphology and de-
creased spine density. Upon binding to the postsynaptic
membrane, ADDLs rapidly decreased the number of
NMDA receptors at the membrane [59]. These findings
are in line with the demonstration that Aβ can regulate
NMDA receptor trafficking and reduce the surface expres-
sion of the receptor by increasing endocytosis, an effect that
is partially blocked by a nACh receptor antagonist [60].
Further support for the involvement of NMDA receptors
was provided by three additional studies [61–63]. One of
these studies demonstrated that exposure to physiological
concentrations of naturally secreted Aβ oligomers induces
a loss of dendritic spines in rat organotypic slices [61]. This
loss could be prevented by prolonged application of an
NMDA receptor antagonist, which alone had no effect on
spine density, indicating that NMDA receptor activity is
required for Aβ oligomer toxicity. Structural analyses of
presynaptic and postsynaptic morphology of cultured
hippocampal neurons incubated with cell-derived Aβ
oligomers further revealed a rapid decrease in size and
number of presynaptic markers and dendritic spines that
was blocked by an antagonist of the NMDA or nACh
receptor [62]. Finally, the analysis of the effect of Aβ on
the number of NMDA receptors in primary neurons and
brain extracts from APP transgenic mice also showed a
significant decrease of surface NMDA receptor in postsyn-
aptic density preparations [63]. A similar reduction in the
surface expression of the AMPA receptor upon Aβ
exposure was also reported [64]. By using an efficient set
of transfection assays in organotypic slice cultures, Hsieh
et al. demonstrated that Aβ triggers synaptic AMPA
receptor endocytosis, which reduces the number of surface
AMPA receptors and leads to dendritic spine loss. These
findings support previous reports that Aβ reduces the level
of AMPA receptor and postsynaptic density protein 95
(PSD-95) in neuronal cultures [65, 66] and in a double
knock-in mouse model of AD [67].

These profound alterations in the composition and
structure of the postsynaptic compartment have severe
functional consequences. Electrophysiological recordings
assessing synaptic strength demonstrated a general reduction
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in miniature excitatory postsynaptic currents (mEPSCs)
amplitude [61, 62, 64], in NMDA receptor and AMPA
receptor currents [60, 61, 67], and in calcium influx [61],
all indicating decreased synaptic strength. These changes
share parallels with long-term depression (LTD), a form of
synaptic plasticity that reflects a weakening of synaptic
transmission and that has been recently shown to restruc-
ture synaptic contacts [68]. Thus, a shift toward synaptic
depression, indicative of an inhibitory effect of Aβ, is in
line with the observed memory impairment and lower LTP
induction in transgenic mouse models of AD. However, a
recent report suggested that the effect of Aβ is more
complex. APP transgenic mice carrying various familial
AD mutations showed an aberrant increase in excitatory
neuronal activity leading to nonconvulsive seizures [69],
indicating an excitatory effect of Aβ. Yet at the same time,
downregulation of functional synaptic AMPA and NMDA
receptors and structural changes in inhibitory circuits were
observed and interpreted as compensatory inhibitory mech-
anisms to overexcitation [69]. Although interesting, this
hypothesis will need more work to be confirmed.

Altered Downstream Signaling and Immediate Early Genes

Changes in neurotransmitter receptor functions might entail
activity changes of various downstream signaling mole-
cules. Calcium-dependent enzymes, in particular, are likely
to be affected by Aβ, whether Aβ has excitatory or
inhibitory effects on these receptors. Many protein kinases
and phosphatases such as calcium/calmodulin-dependent
kinase II (CaMKII) and calcineurin belong to this class of
enzymes. One of the first steps in signaling cascades
involved in learning and memory involves changes in the
phosphorylation and activity of various key players. The
balance between protein kinases and phosphatases is critical
for signal transmission and a shift in this balance has a
strong impact on the efficiency of transmission. A substantial
change in protein phosphatase activity has been observed in
humans and rodents during normal aging and has been
associated with AD [70]. The hyperphosphorylation of tau
that ultimately leads to the formation of neurofibrillary
tangles has raised the possibility that protein phosphatases
are also involved in AD etiology through tau. Tau
phosphatases such as PP2A are downregulated in AD
patients (reviewed in [71]). Although a general decrease in
phosphatase activity could account for tau pathology in AD,
a more complex role of phosphatases is emerging. Increased
activation of calcineurin (also known as PP2B) has been
observed in AD patients [72, 73] and the role of this protein
phosphatase has recently gained interest. Calcineurin is
involved in Aβ-mediated downregulation of NMDA recep-
tors [60], AMPA receptor internalization [64], and spine loss
[61]. Consistently, Aβ-mediated inhibition of LTP through

calcineurin-dependent mechanisms was reported in rat
hippocampal slices [74]. Similarly, protein phosphatase 1
(PP1), a major negative regulator of synaptic plasticity, was
recently shown to be involved in Aβ-mediated toxicity in
APP transgenic mice, and PP1 inhibition can rescue the
negative effect of Aβ on synaptic plasticity [54].

Changes in protein kinase activity have also been linked
with AD pathology, in particular with tau hyperphosphoryla-
tion. GSK3β, a major tau kinase, is activated by Aβ
(reviewed in [75]). It may phosphorylate full-length APP
and thereby alter Aβ production [76] and can modulate
LTP and LTD [77, 78]. Cyclin-dependent kinase 5 (Cdk5),
p21-activated kinase (PAK), and CaMKII are additional
protein kinases of major interest in the field of AD. Cdk5
not only phosphorylates tau (reviewed in [79]), but is also
involved in the production of intraneuronal Aβ [80].
Furthermore, Cdk5/p25 plays an important role in the
regulation of synapse formation, making it an even more
interesting candidate for AD. Whether its activity increases
the number of dendritic spines and promotes synapto-
genesis [81, 82] or causes dendritic spine retraction [83]
and NMDA receptor degradation [84] seems however to
depend on the cellular context. The activity of PAK is
reduced in Aβ oligomer-treated hippocampal neurons and
in Tg2576 mice [85] (see the “Aβ-induced disruption of the
cytoskeletal network” section). As the loss of PAK in
transgenic mice reduces the number of dendritic spines
[86], such reduction in PAK activity in AD might
contribute to the observed spine loss. CaMKII is another
tau kinase whose phosphorylation and activity are de-
creased in the brain of AD patients and AD mouse models
as well as in primary hippocampal neurons exposed to Aβ
[54, 87, 88]). The property of CaMKII to act as a primary
initiator of signaling cascades underlying LTP (for a recent
review, see [89]) may thus contribute to the LTP impair-
ment induced by Aβ.

An alteration in the kinases/phosphatases balance further
influences additional downstream factors regulated by
protein phosphorylation including the cAMP response
element-binding protein (CREB). CREB phosphorylation
is decreased by Aβ in AD patients [90], transgenic mouse
models [91], as well as in cultured neurons [60, 92, 93] and
hippocampal slices [91, 94]. As phosphorylated CREB acts
as a transcription factor, reduced phosphorylation can
ultimately lead to changes in gene expression. Microarray
analyses have revealed long-lasting expression alterations
of numerous candidate genes in AD patients and transgenic
mouse models (for a review, see [95]). Furthermore, the
expression of immediate early genes (IEGs), known to be
rapidly induced in an activity-dependent manner during
learning and memory, is affected in AD mouse models [96,
97]. The IEG Arc/Arg3.1, in particular, is an established
marker of neuronal activity whose expression is robustly
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induced upon synaptic activity and its mRNA rapidly
transported to dendritic processes for local translation (for
a current review, see [98]). Several recent studies demon-
strated its importance in synaptic plasticity [99–102]. Arc/
Arg3.1 regulates AMPA receptor trafficking by increasing
endocytosis which reduces its surface expression and
AMPA receptor-mediated synaptic currents (see also [98]).
This somewhat counterintuitive effect was postulated to
reflect a homeostatic mechanism that maintains synaptic
strength within a physiological range after enhanced
activity to allow subsequent change in synaptic transmis-
sion. Thus, a disruption of Arc/Arg3.1 expression, whether
toward an upregulation or downregulation, alters homeo-
stasis and severely impairs memory [98]. It is interesting to
note that both phenomena have been observed in relation to
AD. Whereas an acute exposure to Aβ oligomers increases
Arc/Arg3.1 expression in primary neuronal cultures [58], a
long exposure diminishes Arc/Arg3.1 expression in basal
conditions and its induction after learning in transgenic
mice [54, 69, 97, 103, 104] and AD patients [105].

Molecular Mechanisms II: Aβ-induced Disruption
of the Cytoskeletal Network

As spine dynamics is highly dependent on the cytoskeletal
network, a change in dendritic spine structures upon Aβ
exposure is likely to involve the activity of actin-remodeling
proteins (for a recent review, see [10]). One likely candidate
is the actin-binding protein cofilin. Binding of active cofilin
along actin filaments increases the removal of actin mono-
mers from the sharp end of the filaments and enhances
filament severing and depolymerization. Several pieces of
evidence point to a role for cofilin in AD pathology. In AD
patients and transgenic mouse models, the overall level of
cofilin is altered (reviewed in [106]). Furthermore, the
expression of an inactivated form of cofilin or a specific
competitor for cofilin phosphorylation in culture increases
spine density and prevents the loss of dendritic spines upon
exposure to Aβ oligomers [61, 107]. Cofilin also forms one
of the components of Hirano bodies, intracellular aggre-
gates of actin, and actin-associated proteins which accu-
mulate in the brain of AD patients [108] that may disturb
neuronal functions. Although these findings overall indicate
that cofilin is associated with AD, it is not known how
exactly Aβ affects cofilin function. One potential mecha-
nism may involve protein kinases and phosphatases. Cofilin
activity is abolished upon phosphorylation by various
kinases including CaMKII and PAK/LIM kinase and
restored upon dephosphorylation by the protein phospha-
tases calcineurin, PP1, and slingshot (reviewed in [20,
106]) whose activities are altered by Aβ (see the “Altered
downstream signaling and immediate early genes” section).

Cofilin has also recently been shown to be involved in LTP
by the demonstration that theta-burst stimulation increases
both phospho-cofilin and phosphor-PAK in spines and
enlarges synapses in hippocampal slices [109]. Further-
more, the number of spines containing phospho-cofilin
increases after exposure to a novel environment [110]. A
recent report showing that the synthesis of Arc/Arg3.1
maintains cofilin phosphorylation during LTP [111], further
supports the hypothesis that altered signaling affects the
actin cytoskeleton.

Another major actin-binding protein tightly linked with
cofilin is the protein drebrin. Drebrin stabilizes filamentous
actin and is required for the accumulation of PSD95. A
profound loss of drebrin has been reported in the brains of
AD patients, in several transgenic mouse models, and in
primary neurons exposed to Aβ oligomers (for a recent
review, see [112]). This loss is accompanied by increased
binding of cofilin, suggesting a competitive relationship
between the two proteins [85, 113]. Drebrin has also been
shown to be involved in synaptic targeting of NMDA
receptors and downregulation of drebrin in cultured
hippocampal neurons reduced spine density and spine
widths, indicating an important role of drebrin in spine
morphology regulation [114].

Aβ-induced Disturbances are Partially Reversible
and can be Prevented by Pharmacological
Manipulations

Although the alteration in synaptic signaling and the
cytoskeletal network induced by Aβ are profound, these
disturbances can be partially rescued, at least at an early
stage, using various strategies. Targeting Aβ with anti-
bodies is one of the most promising current therapeutic
approaches that are already under evaluation in clinical trials.
Several groups including ours have shown a beneficial effect
of passive immunization on cognitive functions and LTP in
rodents, even after a single antibody administration [54, 115].
Furthermore, active and passive immunization were shown
to protect against the progressive loss of synaptophysin
[115]. Spine loss in neuronal cultures can be prevented by
Aβ-specific antibodies [61, 116], and the simple removal of
Aβ from the culture medium by washing has been shown to
be sufficient for spine recovery [62, 117]. Moreover, in line
with the hypothesis that Aβ oligomers interact with
neurotransmitter receptors, recent experiments using NMDA
or nACh receptor antagonists confirmed that the initial toxic
effect of Aβ is reversible and can be prevented. Whereas a
complete blockade of NMDA or nACh receptors prevented
Aβ oligomer-mediated spine loss or attenuated their negative
effect [60–62], a partial blockade of NMDA receptors was
shown to mimic Aβ oligomer toxicity, a phenomenon that
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might be explained by the activation of LTD pathways
because of lower calcium influx [61]. It is interesting to note
that memantine, one of the few currently available drugs for
the treatment of AD, acts as an NMDA receptor antagonist.
When applied to neuronal cultures exposed to Aβ oligomers,
memantine was shown to prevent dendritic spine loss [59,
62], providing a possible mechanism for its beneficial effect
in AD patients.

Pharmacological inhibition of proteins further down-
stream of neurotransmitter receptors has also been reported
to protect from Aβ toxicity. The protein phosphatase
inhibitors FK506 and cyclosporin can restore or prevent
Aβ oligomer-mediated effects [60, 61, 64, 74]. The
systemic administration of FK506 in Tg2567 mice has also
recently been shown to improve memory formation [118].
Similarly, the pharmacological inhibition of PP1 reverses
LTP deficits in APP transgenic mice and genetic PP1
inhibition confers resistance to Aβ oligomer toxicity [54].

Conclusions

Understanding the mechanisms of Aβ-mediated toxicity is
a prerequisite for the development of efficient and safe
therapeutic approaches to treat AD. The data summarized in
this review provide increasing evidence that Aβ exerts its
toxic effect by disrupting synaptic signaling, leading to

dendritic spine loss and synaptic alterations, which ulti-
mately result in cognitive dysfunctions. Recent findings
have proposed a direct interaction of Aβ with postsynaptic
receptors, triggering a signaling cascade that shares re-
markable similarities with LTD (see Fig. 1). An alteration
of the kinases/phosphatases balance upon Aβ exposure
could explain some of the changes observed at a synaptic
level. Kinases and phosphatases influence the cycling,
insertion, and conductance of postsynaptic receptors such
as AMPA receptors, affect the activity of actin-remodeling
proteins such as cofilin and drebrin, and also exert
influence on gene transcription by activating/deactivating
transcription factors such as CREB.

When sketched in a simplified view, some of the mecha-
nisms in AD pathology may involve the pathways shown in
Fig. 1. LTP is associated with a large influx of calcium,
activation of CaMKII via calcium/calmodulin, and phosphor-
ylation of multiple downstream targets. Among these targets,
CaMKII-dependent phosphorylation of AMPA receptors
alters the receptor’s conductance, whereas cofilin phosphor-
ylation prevents its binding to the actin cytoskeleton, and
enables drebrin to remain bound and stabilize the cytoskel-
eton. Phosphorylation of the transcription factor CREB also
occurs through various protein kinases including CaMKIV
that may depend on calcium/calmodulin or on active
CaMKII. Binding of phosphorylated CREB to DNA may
then activate the transcription of IEGs, which in turn

Fig. 1 A simplified schematic
representation of major events
occurring in dendritic spines
upon LTP (left) or LTD/Aβ
oligomer exposure (right).
Although there is increasing
evidence that Aβ oligomers may
trigger signaling cascades simi-
lar to LTD, the actual binding
partners at the postsynaptic
membrane (for instance
NMDAR and AMPAR) remain
under discussion. For a detailed
description of the signaling
cascade, see the main text. LTP
long-term potentiation, LTD
long-term depression, CaMKII
calcium/calmodulin-dependent
kinase II, CREB cAMP response
element-binding protein, IEGs
immediate early genes, NMDAR
N-methyl-D-aspartate receptor,
AMPAR α-amino-3-hydroxy-
5-methylisoxazole-4-propionic
acid receptor, PP1 protein
phosphatase 1. Solid arrows
show direct interaction, dashed
arrows show indirect or
unknown interactions
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influence the actin cytoskeleton through yet unknown
mechanisms. Finally, LTP-associated conditions enhance the
insertion of AMPA receptors into the postsynaptic membrane,
resulting in synaptic strengthening.

In contrast, conditions that initiate LTD lead to a mild
influx of calcium and the activation of the protein phospha-
tases calcineurin and PP1. Once active, these phosphatases
inactivate CaMKII, reduce the conductance of AMPA
receptors, and dephosphorylate CREB, thus blocking the
initiation of IEGs transcription. Furthermore, dephosphory-
lation of cofilin by calcineurin and PP1 promotes its binding
to the actin cytoskeleton where cofilin displaces the actin-
stabilizing protein drebrin and severs the filaments. These
events, together with the increased endocytosis of AMPA
receptors, overall weaken synapses and cause spine shrink-
age. Although the initial interaction partner or partners of Aβ
oligomers have not been identified with certainty, the current
data strongly suggest that exposure to Aβ oligomers results
in similar pathway as LTD.
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