84 research outputs found

    The role of RAS mutations in MLL-rearranged leukaemia: A path to intervention?

    Get PDF
    Childhood acute lymphoblastic leukaemia (ALL) with MLL rearrangement (MLL-r) is an aggressive disease still associated with a high mortality rate. Recent investigations have identified co-operating mutations in the RAS pathway and although the functional consequences of these mutations are not yet fully understood, aberrant regulation of RAS pathway signalling at both transcriptional and protein levels is observed. Studies investigating the efficacy of specific inhibitors of this pathway, e.g. MEK-inhibitors, have also achieved encouraging results. In this context, this mini-review summarizes the available data surrounding MLL-r infant ALL with RAS mutation in relation to other well-known features of this intriguing disease

    IKZF1 Deletions with COBL Breakpoints Are Not Driven by RAG-Mediated Recombination Events in Acute Lymphoblastic Leukemia

    Get PDF
    IKZF1 deletion (Ī”IKZF1) is an important predictor of relapse in both childhood and adult B-cell precursor acute lymphoblastic leukemia (B-ALL). Previously, we revealed that COBL is a hotspot for breakpoints in leukemia and could promote IKZF1 deletions. Through an international collaboration, we provide a detailed genetic and clinical picture of B-ALL with COBL rearrangements (COBL-r). Patients with B-ALL and IKZF1 deletion (n = 133) were included. IKZF1 āˆ†1-8 were associated with large alterations within chromosome 7: monosomy 7 (18%), isochromosome 7q (10%), 7p loss (19%), and interstitial deletions (53%). The latter included COBL-r, which were found in 12% of the IKZF1 āˆ†1-8 cohort. Patients with COBL-r are mostly classified as intermediate cytogenetic risk and frequently harbor ETV6, PAX5, CDKN2A/B deletions. Overall, 56% of breakpoints were located within COBL intron 5. Cryptic recombination signal sequence motifs were broadly distributed within the sequence of COBL, and no enrichment for the breakpoint cluster region was found. In summary, a diverse spectrum of alterations characterizes Ī”IKZF1 and they also include deletion breakpoints within COBL. We confirmed that COBL is a hotspot associated with Ī”IKZF1, but these rearrangements are not driven by RAG-mediated recombination

    No evidence for an association between the -36A>C phospholamban gene polymorphism and a worse prognosis in heart failure

    Get PDF
    Background: In Brazil, heart failure leads to approximately 25,000 deaths per year. Abnormal calcium handling is a hallmark of heart failure and changes in genes encoding for proteins involved in the re-uptake of calcium might harbor mutations leading to inherited cardiomyopathies. Phospholamban (PLN) plays a prime role in cardiac contractility and relaxation and mutations in the gene encoding PLN have been associated with dilated cardiomyopathy. In this study, our objective was to determine the presence of the -36A>C alteration in PLN gene in a Brazilian population of individuals with HF and to test whether this alteration is associated with heart failure or with a worse prognosis of patients with HF. Methods: We genotyped a cohort of 881 patients with HF and 1259 individuals from a cohort of individuals from the general population for the alteration -36A>C in the PLN gene. Allele and genotype frequencies were compared between groups (patients and control). In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotypic groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the -36A>C were compared regarding mortality incidence in HF patients. Results: No significant association was found between the study polymorphism and HF in our population. In addition, no association between PLN -36A>C polymorphism and demographic, clinical and functional characteristics and mortality incidence in this sample of HF patients was observed. Conclusion: Our data do not support a role for the PLN -36A>C alteration in modulating the heart failure phenotype, including its clinical course, in humans

    Impact of complex NOTCH1 mutations on survival in paediatric T-cell leukaemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Molecular alterations occur frequently in T-ALL and the potential impact of those abnormalities on outcome is still controversial. The current study aimed to test whether <it>NOTCH1 </it>mutations and additional molecular abnormalities would impact T-ALL outcome in a series of 138 T-ALL paediatric cases.</p> <p>Methods</p> <p>T-ALL subtypes, status of <it>SIL-TAL1 </it>fusion, ectopic expression of <it>TLX3</it>, and mutations in <it>FBXW7</it>, <it>KRAS</it>, <it>PTEN </it>and <it>NOTCH1 </it>were assessed as overall survival (OS) and event-free survival (EFS) prognostic factors. OS and EFS were determined using the Kaplan-Meier method and compared using the log-rank test.</p> <p>Results</p> <p>The frequencies of mutations were 43.5% for <it>NOTCH1</it>, while <it>FBXW7</it>, <it>KRAS </it>and <it>PTEN </it>exhibited frequencies of 19.1%, 9.5% and 9.4%, respectively. In 78.3% of cases, the coexistence of <it>NOTCH1 </it>mutations and other molecular alterations was observed. In multivariate analysis no statistical association was revealed between <it>NOTCH1 </it>mutations and any other variable analyzed. The mean length of the follow-up was 68.4 months and the OS was 50.7%. <it>SIL-TAL1 </it>was identified as an adverse prognostic factor. <it>NOTCH1 </it>mutation status was not associated with outcome, while the presence of <it>NOTCH1 </it>complex mutations (indels) were associated with a longer overall survival (<it>p </it>= 0.031) than point mutations.</p> <p>Conclusion</p> <p><it>NOTCH1 </it>mutations alone or in combination with <it>FBXW7 </it>did not impact T-ALL prognosis. Nevertheless, complex <it>NOTCH1 </it>mutations appear to have a positive impact on OS and the <it>SIL-TAL1 </it>fusion was validated as a negative prognostic marker in our series of T-ALL.</p

    The subclonal complexity of STIL-TAL1+ T-cell acute lymphoblastic leukaemia

    Get PDF
    Single-cell genetics were used to interrogate clonal complexity and the sequence of mutational events in STIL-TAL1+ T-ALL. Single-cell multicolour FISH was used to demonstrate that the earliest detectable leukaemia subclone contained the STIL-TAL1 fusion and copy number loss of 9p21.3 (CDKN2A/CDKN2B locus), with other copy number alterations including loss of PTEN occurring as secondary subclonal events. In three cases, multiplex qPCR and phylogenetic analysis were used to produce branching evolutionary trees recapitulating the snapshot history of T-ALL evolution in this leukaemia subtype, which confirmed that mutations in key T-ALL drivers, including NOTCH1 and PTEN, were subclonal and reiterative in distinct subclones. Xenografting confirmed that self-renewing or propagating cells were genetically diverse. These data suggest that the STIL-TAL1 fusion is a likely founder or truncal event. Therapies targeting the TAL1 auto-regulatory complex are worthy of further investigation in T-ALL

    Clinical and molecular characterization of early T-cell precursor leukemia: a high-risk subgroup in adult T-ALL with a high frequency of FLT3 mutations

    Get PDF
    A subgroup of pediatric acute T-lymphoblastic leukemia (T-ALL) was characterized by a gene expression profile comparable to that of early T-cell precursors (ETPs) with a highly unfavorable outcome. We have investigated clinical and molecular characteristics of the ETP-ALL subgroup in adult T-ALL. As ETP-ALL represents a subgroup of early T-ALL we particularly focused on this cohort and identified 178 adult patients enrolled in the German Acute Lymphoblastic Leukemia Multicenter studies (05/93ā€“07/03). Of these, 32% (57/178) were classified as ETP-ALL based on their characteristic immunophenotype. The outcome of adults with ETP-ALL was poor with an overall survival of only 35% at 10 years, comparable to the inferior outcome of early T-ALL with 38%. The molecular characterization of adult ETP-ALL revealed distinct alterations with overexpression of stem cell-related genes (BAALC, IGFBP7, MN1, WT1). Interestingly, we found a low rate of NOTCH1 mutations and no FBXW7 mutations in adult ETP-ALL. In contrast, FLT3 mutations, rare in the overall cohort of T-ALL, were very frequent and nearly exclusively found in ETP-ALL characterized by a specific immunophenotype. These molecular characteristics provide biologic insights and implications with respect to innovative treatment strategies (for example, tyrosine kinase inhibitors) for this high-risk subgroup of adult ETP-ALL
    • ā€¦
    corecore