122 research outputs found

    An inexpensive and rapid diagnostic method of Koi Herpesvirus (KHV) infection by loop-mediated isothermal amplification

    Get PDF
    BACKGROUND: Koi Herpesvirus (KHV) affects both juvenile and adult common carp and koi, and is especially lethal to fry. The high mortalities caused by the disease have had a negative impact on the international koi trade. Different diagnostic techniques have been used to detect KHV, including: isolation of the virus in cell culture, electron microscopy, several PCR tests, ELISA and in situ hybridisation. All of these methods are time consuming, laborious and require specialised equipment. RESULTS: A rapid field diagnosis of KHV in common and koi carp was developed using loop-mediated isothermal amplification (LAMP). The LAMP reaction rapidly amplified nucleic acid with high specificity and efficiency under isothermal conditions using a simple water bath. Two methods of extracting DNA from host tissue were compared: extraction by boiling and by using a commercial extraction kit. A set of six primers – two inner primers, two outer primers and two loop primers – was designed from a KHV amplicon. The reaction conditions were optimised for detection of KHV in 60 min at 65°C using Bst (Bacillus stearothermophilus) DNA polymerase. When visualised by gel electrophoresis, the products of the KHV LAMP assay appeared as a ladder pattern, with many bands of different sizes from 50 base-pairs (bp) up to the loading well. The KHV LAMP product could also be simply detected visually by adding SYBR Green I to the reaction tube and observing a colour change from orange to green. All samples positive for KHV by visual detection were confirmed positive by gel electrophoresis. The KHV LAMP had the same sensitivity as a standard PCR assay for the detection of KHV. CONCLUSION: This paper describes an accelerated LAMP assay for diagnosis of KHV. The entire procedure took only 90 minutes to produce a result: 15 minutes for DNA extraction; 60 min for the LAMP reaction; 2 min for visual detection using SYBR Green I. The test can be used under field conditions because the only equipment it requires is a water bath

    Loop-mediated isothermal amplification as an emerging technology for detection of Yersinia ruckeri the causative agent of enteric red mouth disease in fish

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Enteric Redmouth (ERM) disease also known as Yersiniosis is a contagious disease affecting salmonids, mainly rainbow trout. The causative agent is the gram-negative bacterium <it>Yersinia ruckeri</it>. The disease can be diagnosed by isolation and identification of the causative agent, or detection of the <it>Pathogen </it>using fluorescent antibody tests, ELISA and PCR assays. These diagnostic methods are laborious, time consuming and need well trained personnel.</p> <p>Results</p> <p>A loop-mediated isothermal amplification (LAMP) assay was developed and evaluated for detection of <it>Y. ruckeri </it>the etiological agent of enteric red mouth (ERM) disease in salmonids. The assay was optimised to amplify the <it>yruI/yruR </it>gene, which encodes <it>Y. ruckeri </it>quorum sensing system, in the presence of a specific primer set and <it>Bst </it>DNA polymerase at an isothermal temperature of 63°C for one hour. Amplification products were detected by visual inspection, agarose gel electrophoresis and by real-time monitoring of turbidity resulted by formation of LAMP amplicons. Digestion with <it>Hph</it>I restriction enzyme demonstrated that the amplified product was unique. The specificity of the assay was verified by the absence of amplification products when tested against related bacteria. The assay had 10-fold higher sensitivity compared with conventional PCR and successfully detected <it>Y. ruckeri </it>not only in pure bacterial culture but also in tissue homogenates of infected fish.</p> <p>Conclusion</p> <p>The ERM-LAMP assay represents a practical alternative to the microbiological approach for rapid, sensitive and specific detection of <it>Y. ruckeri </it>in fish farms. The assay is carried out in one hour and needs only a heating block or water bath as laboratory furniture. The advantages of the ERM-LAMP assay make it a promising tool for molecular detection of enteric red mouth disease in fish farms.</p

    Delivering the pain:an overview of the type III secretion system with special consideration for aquatic pathogens

    Get PDF
    Gram-negative bacteria are known to subvert eukaryotic cell physiological mechanisms using a wide array of virulence factors, among which the type three-secretion system (T3SS) is often one of the most important. The T3SS constitutes a needle-like apparatus that the bacterium uses to inject a diverse set of effector proteins directly into the cytoplasm of the host cells where they can hamper the host cellular machinery for a variety of purposes. While the structure of the T3SS is somewhat conserved and well described, effector proteins are much more diverse and specific for each pathogen. The T3SS can remodel the cytoskeleton integrity to promote intracellular invasion, as well as silence specific eukaryotic cell signals, notably to hinder or elude the immune response and cause apoptosis. This is also the case in aquatic bacterial pathogens where the T3SS can often play a central role in the establishment of disease, although it remains understudied in several species of important fish pathogens, notably in Yersinia ruckeri. In the present review, we summarise what is known of the T3SS, with a special focus on aquatic pathogens and suggest some possible avenues for research including the potential to target the T3SS for the development of new anti-virulence drugs. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13567-021-01015-8

    Tetracapsuloides bryosalmonae infection affects the expression of genes involved in cellular signal transduction and iron metabolism in the kidney of the brown trout Salmo trutta

    Get PDF
    Tetracapsuloides bryosalmonae is an enigmatic endoparasite which causes proliferative kidney disease in various species of salmonids in Europe and North America. The life cycle of the European strain of T. bryosalmonae generally completes in an invertebrate host freshwater bryozoan and vertebrate host brown trout (Salmo trutta) Linnaeus, 1758. Little is known about the gene expression in the kidney of brown trout during the developmental stages of T. bryosalmonae. In the present study, quantitative real-time PCR was applied to quantify the target genes of interest in the kidney of brown trout at different time points of T. bryosalmonae development. PCR primers specific for target genes were designed and optimized, and their gene expression levels were quantified in the cDNA kidney samples using SYBR Green Supermix. Expression of Rab GDP dissociation inhibitor beta, integral membrane protein 2B, NADH dehydrogenase 1 beta subcomplex subunit 6, and 26S protease regulatory subunit S10B were upregulated significantly in infected brown trout, while the expression of the ferritin M middle subunit was downregulated significantly. These results suggest that host genes involved in cellular signal transduction, proteasomal activities, including membrane transporters and cellular iron storage, are differentially upregulated or downregulated in the kidney of brown trout during parasite development. The gene expression pattern of infected renal tissue may support the development of intraluminal sporogonic stages of T. bryosalmonae in the renal tubular lumen of brown trout which may facilitate the release of viable parasite spores to transmit to the invertebrate host bryozoan

    Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities

    Get PDF
    Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the “only green and effective solution” to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host–parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites

    Low pathogenic strain of infectious pancreatic necrosis virus (IPNV) associated with recent outbreaks in iranian trout farms

    Get PDF
    Infectious pancreatic necrosis (IPN), first described as acute viral catarrhal enteritis, is a highly contagious disease with variable pathogenicity that has been linked to genetic variation in the viral VP2 gene encoding the capsid protein. In this study, the IPN virus (IPNV) is isolated from the moribund fish from five of fourteen Iranian trout farms from 2015 to 2017. The affected fish showed mortality rates ranging from 20% to 60%, with the main clinical signs of exophthalmia, darkened skin, and mild abdominal distension, as well as yellow mucoid fluid in the intestine. Histopathological examination of intestinal sections confirmed acute catarrhal enteritis in all samples. RT-PCR assay of the kidney tissue and cell culture (CHSE-214) samples consistently confirmed the presence of the virus. The phylogenetic analysis of the partial VP2 sequence revealed that the detected isolates belong to genogroup 5, and are closely related to the Sp serotype strains of European origin. Characterization of VP2 of all isolates revealed the P217T221 motif that previously was associated with avirulence or low virulence, while all IPNV-positive fish in this study were clinically affected with moderate mortality. The IPNV isolates from Iran are associated with two lineages that appear to have originated from Europe, possibly via imported eggs

    Vertical transmission of Tetracapsuloides bryosalmonae (Myxozoa), the causative agent of salmonid proliferative kidney disease

    Get PDF
    license: Copyright © Cambridge University Press 2013 0000-0001-7279-715Xlicense: Copyright © Cambridge University Press 2013. The attached document is the authors' final accepted version of the journal article. You are advised to consult the publisher's version if you wish to cite from it

    Differentially expressed transcripts of Tetracapsuloides bryosalmonae (Cnidaria) between carrier and dead‑end hosts involved in key biological processes: novel insights from a coupled approach of FACS and RNA sequencing

    Get PDF
    Tetracapsuloides bryosalmonae is a malacosporean endoparasite that infects a wide range of salmonids and causes proliferative kidney disease (PKD). Brown trout serves as a carrier host whereas rainbow trout represents a dead-end host. We thus asked if the parasite adapts to the different hosts by changing molecular mechanisms. We used fluorescent activated cell sorting (FACS) to isolate parasites from the kidney of brown trout and rainbow trout following experimental infection with T. bryosalmonae. The sorted parasite cells were then subjected to RNA sequencing. By this approach, we identified 1120 parasite transcripts that were expressed differentially in parasites derived from brown trout and rainbow trout. We found elevated levels of transcripts related to cytoskeleton organisation, cell polarity, peptidyl-serine phosphorylation in parasites sorted from brown trout. In contrast, transcripts related to translation, ribonucleoprotein complex biogenesis and subunit organisation, non-membrane bounded organelle assembly, regulation of protein catabolic process and protein refolding were upregulated in rainbow trout-derived parasites. These findings show distinct molecular adaptations of parasites, which may underlie their distinct outcomes in the two hosts. Moreover, the identification of these differentially expressed transcripts may enable the identification of novel drug targets that may be exploited as treatment against T. bryosalmonae. We here also describe for the first time how FACS based isolation of T. bryosalmonae cells from infected kidney of fish fosters research and allows to define differentially expressed parasite transcripts in carrier and dead-end fish hosts
    corecore