287 research outputs found

    Optimizing Economic Load Dispatch with Renewable Energy Sources via Differential Evolution Immunized Ant Colony Optimization Technique

    Get PDF
    Recently, renewable energy (RE) has become a trend in power generation. It is slowly evolving from an alternative energy source into the main energy source. The technology is currently working as an auxiliary to the existing generators. Demands for electricity is expanding rapidly nowadays, which require generators to run near its operation limit. This activity put grieve risk to the generators. Nonetheless, the extensive analysis should be conducted upon RE integration into the existing power system. This paper assesses its economic impact on the power system. Setting up RE technology such as photovoltaic and wind turbine are costly, yet may reduce generator’s fuel cost in the long run. Thus, economic load dispatch (ELD) is conducted to compute the operating cost of power system with the integration of RE system. In this study, the operating cost represents the fuel cost of conventional fossil-fuel generators. Furthermore, a novel optimization technique namely Differential Evolution Immunized Ant Colony Optimization is proposed as the optimization engine. Comparative studies are conducted to assess the performance of the proposed approach

    Review of Energy Storage System Technologies in Microgrid Applications:Issues and Challenges

    Get PDF

    Bioremediation of palm industry wastes using vermicomposting technology: its environmental application as green fertilizer

    Get PDF
    Several technologies are being applied for treatment of palm oil mill wastes. Among them, the biological treatments (vermicomposting) have widely been recognized as one of the most efficient and eco-friendly methods for converting organic waste materials into valuable products. The present study focuses on vermicomposting of acidic palm oil mill effluent (POME) mixed with the palm pressed fibre (PPF) which are found difficult to decompose in the environment. The industrial waste (POME) was vermicomposted using Lumbricus rubellus under laboratory conditions for a period of 45 days. A significant improvement in nitrogen, phosphorus, and potassium content was monitored during vermicomposting process. In addition, the decline in C:N ratio of vermicompost (up to 17.20 ± 0.60) reflects the degree of stabilization of POME–PPF mixture. Different percentages of the vermicompost extract obtained from POME–PPF mixture were also examined for the germination of mung bean (Vigna radiata) seed. The results showed that 75% vermicompost extract demonstrated better performance for the seed germination. On the basis of significant findings, POME–PPF mixture can be successfully used as a feeding material for the earthworms, while on the other hand, it can also be used as a cost-effective fertilizer for the germination and the proper growth of mung bean

    Physicochemical properties of virgin coconut oil extracted from different processing methods

    Get PDF
    Virgin Coconut Oils (VCO) were prepared from fresh-dry (grated coconut route), chilling and thawing, enzymatic and fermentation method in this study. All of the VCO produced conformed physicochemically to the standards established by the Asian and Pacific Coconut Community (APCC) and Codex Alimentarius Commission. The highest FA (fatty acid) is lauric acid in all of the VCO and ranged from 46.36-48.42 %, while the principal TAG (triacylglycerol) is LaLaLa (La: Lauric) with 17.94-19.83 % of the total TAG. Tocopherol analysis showed the presence of beta, gamma and delta tocopherols at low levels. In all, the physicochemical, FA and TAG analyses of the VCO extracted from different methods showed some significant differences, while the tocopherol content does not differ significantly among the different types of extraction methods used

    Analysis of a Compact Wideband Slotted Antenna for Ku Band Applications

    Get PDF
    The design procedure and physical module of a compact wideband patch antenna for Ku band application are presented in this paper. Finite element method based on 3D electromagnetic field solver has been utilized for the designing and analyzing process of proposed microstrip line fed modified E-H shaped electrically small patch antenna. After successful completion of the design process through various simulations, the proposed antenna has been fabricated on printed circuit board (PCB) and its characteristics have been studied. The parameters of the proposed antenna prototype have been measured in standard far-field rectangular shape anechoic measurement compartment. It is apparent from the measured antenna parameters that the proposed antenna achieved almost stable variation of radiation pattern over the entire operational band with 1380 MHz of -10 dB return loss bandwidth. The maximum gain of 7.8 dBi and 89.97% average efficiency within the operating band from 17.15 GHz to 18.53 GHz ensure the suitability of the proposed antenna for Ku band applications

    The opportunity of magnetic induction tomography modality in breast cancer detection

    Get PDF
    The needs for non-invasive technique in breast cancer detection could enhance and preserve the future of medical field in Malaysia as well as countries around the world. Breast cancer has become the main concern nowadays not only for women but for man as well. In overall, the risk of women getting breast cancer is higher than man due to the denser tissue of breast in women compare to man. Beside the unawareness for the disease, the reason which contributes to this increasing number of breast cancer reported is also due to the limitations arising from modalities such as MRI, Mammography, ultrasound and other modalities. An alternative to current technologies should be improved for early detection and treatment which causes no physical harm to patients if possible. Thus, non-invasive and better technology in detecting breast cancer is very much needed in the current market. This paper will be discussing the insights of Magnetic Induction Tomography techniques in breast cancer detection

    Reconstruction of Cortical and Cancellous Bone in Tibia with Osteogenesis Imperfecta

    Get PDF
    Osteogenesis Imperfecta (OI) is the bone fragility disorder that leads to long bone bowing. Finite Element Analysis (FEA) has become the tool of choice to assess behaviour structural within bones. Currently, the FEA performed on the tibia is based on the bone constructed without considering different components of the bone, where the bone was created as a single material. In an attempt to further investigate the bone with OI, the present study was conducted to investigate the mechanical stress distribution using finite element model of the OI affected tibia. The model was reconstructed from the CT images composed of cortical and cancellous bones obtained from Osirix database. The segmentation of the cortical and cancellous of the tibia was performed on 346 images using two different methods which are global thresholding and the selection of the binary object. The segmented images were used to develop a three-dimensional model of the tibia using VOXELCON software. The boundary conditions were set to the meshed model in preparation for the finite element analysis using the same software. Displacements ranging from 5 mm to 35 mm were assigned to a point in between the proximal and distal of the tibia model. In the coronal plane, the highest stress levels were recorded on the medial side of the cortical bone, whereas in the sagittal plane, the highest stress levels were recorded on the anterior side of the cortical bone when the model was subjected to 35 mm displacement. The cancellous bone, however, showed lower stress levels on both planes when subjected to similar displacement. With each increment of displacement, the model experienced more stress and caused the higher percentage volume of individual cortical and cancellous that exceed critical stress of 115 MPa. There were no significant differences in the percentage volume of voxels affected between the cortical and cancellous bones for both coronal and sagittal planes with the pvalue of 0.29 and 0.32 respectively (p > 0.05). There was no significant difference obtained for the percentage volume of voxels affected between the coronal and sagittal planes with the p-value is 0.13 (p > 0.05)

    Effects of elevated temperature on high performance concrete incorporating of metakaolin and garnet

    Get PDF
    Durability has become one of the major indicators to dictate a good quality of concrete. Rapid growing in construction leads to the demand of high strength concrete which can bear high stress and high resistance towards any hazard and harsh environment thus providing a safe structure. High performance concrete (HPC) has been identified as one of the advanced types of concrete that can fulfill the criteria. Hence, in this study resistance towards elevated temperature of HPC incorporating 10% of metakaolin as part of cementitious material and 50% of garnet as part of replacement of fine aggregates were investigated. Samples of HPC with metakaolin and garnet (HPCMG) and HPC with metakaolin (HPCM) were exposed to different heating temperature of 200°C, 400°C, 600°C and 800°C for duration of one hour. The changes of physical in color and the appearances of cracks in all samples were closely observed. In addition, compressive strength tests according to BS1881-116:1983 and percentage of weight loss for all the samples were also monitored in this study. Results showed that as the temperature increased, significance losses of compressive strength were detected for both HPCMG and HPCM. At the temperature of 800°C, HPCMG degenerated 86.8% of its strength compared to 71.8% for HPCM. As temperature increased, weight loss of HPCM indicated higher reading compared to HPCMG. Major changes of the physical appearances were also detected in both HPCM and HPCGM samples such as cracks and increment in gap width on the samples. This summarized that HPCM has better fire resistance compared to HPCMG
    corecore