10 research outputs found

    The role of alkyl chain length in the inhibitory effect n-alkyl xanthates on mushroom tyrosinase activities

    No full text
    Sodium salts of four n-alkyl xanthate compounds, C2H5OCS2Na (I), C3H7OCS2Na (II), C4H9OCS2Na (III), and C6H13OCS2Na (IV) were synthesized and examined for inhibition of both cresolase and catecholase activities of mushroom tyrosinase (MT) in 10 mM sodium phosphate buffer, pH 6.8, at 293 K using UV spectrophotemetry. 4-[(4-methylbenzo)azo]-1,2-benzendiol (MeBACat) and 4-[(4-methylphenyl)azo]-phenol (MePAPh) were used as synthetic substrates for the enzyme for catecholase and cresolase reactions, respectively. Lineweaver-Burk plots showed different patterns of mixed, competitive or uncompetitive inhibition for the four xanthates. For the cresolase activity, I and II showed uncompetitive inhibition but III and IV showed competitive inhibition pattern. For the catecholase activity, I and II showed mixed inhibition but III and IV showed competitive inhibition. The synthesized compounds can be classified as potent inhibitors of MT due to their Ki values of 13.8, 11, 8 and 5 µM for the cresolase activity, and 1.4, 5, 13 and 25 µM for the catecholase activity for I, II, III and IV, respectively. For the catecholase activity both substrate and inhibitor can be bound to the enzyme with negative cooperativity between the binding sites (α > 1) and this negative cooperativity increases with increasing length of the aliphatic tail of these compounds. The length of the hydrophobic tail of the xanthates has a stronger effect on the Ki values for catecholase inhibition than for cresolase inhibition. Increasing the length of the hydrophobic tail leads to a decrease of the Ki values for cresolase inhibition and an increase of the Ki values for catecholase inhibition

    Fresh versus frozen embryo transfer after gonadotropin-releasing hormone agonist trigger in gonadotropin-releasing hormone antagonist cycles among high responder women: A randomized, multi-center study

    No full text
    Background: The use of embryo cryopreservation excludes the possible detrimental effects of ovarian stimulation on the endometrium, and higher reproductive outcomes following this policy have been reported. Moreover, gonadotropin-releasing hormone agonist trigger in gonadotropin-releasing hormone (GnRH) antagonist cycles as a substitute for standard human chorionic gonadotropin trigger, minimizes the risk of ovarian hyperstimulation syndrome (OHSS) in fresh as well as frozen embryo transfer cycles (FET). Objective: To compare the reproductive outcomes and risk of OHSS in fresh vs frozen embryo transfer in high responder patients, undergoing in vitro fertilization triggered with a bolus of GnRH agonist. Materials and Methods: In this randomized, multi-centre study, 121 women undergoing FET and 119 women undergoing fresh ET were investigated as regards clinical pregnancy as the primary outcome and the chemical pregnancy, live birth, OHSS development, and perinatal data as secondary outcomes. Results: There were no significant differences between FET and fresh groups regarding chemical (46.4% vs. 40.2%, p=0.352), clinical (35.8% vs. 38.3%, p=0.699), and ongoing (30.3% vs. 32.7%, p=0.700) pregnancy rates, also live birth (30.3% vs. 29.9%, p=0.953), perinatal outcomes, and OHSS development (35.6% vs. 42.9%, p=0.337). No woman developed severe OHSS and no one required admission to hospital. Conclusion: Our findings suggest that GnRHa trigger followed by fresh transfer with modified luteal phase support in terms of a small human chorionic gonadotropin bolus is a good strategy to secure good live birth rates and a low risk of clinically relevant OHSS development in in vitro fertilization patients at risk of OHSS
    corecore