12 research outputs found

    Analysis of 114 pedigrees of renal stone patients: A retrospective review

    Get PDF
    Background: Renal and ureteric stones (RS) can form due to genetic, metabolic, environmental, and diet-hydration related factors. Studies have shown that patients with family history (FH) of RS have higher likelihood of recurrence.Materials and methods: We conducted a retrospective cross-sectional study on 114 pedigrees to investigate the impact of FH on recurrence of RS and examine patterns of inheritance. Results: Family history of renal stone disease was found in 42% of all patients. There was a significant increase of stone recurrence in RS patients with a positive FH (p=0.001). Seventy-one percent of patients with recurrent stones had at least one family member with RS. Interestingly, male penetrance was higher in RS recurrence, where a greater proportion of males had no FH of RS, indicating that there may be other factors involved as well. Conclusion: Family history in RS patients should be continuously explored for the possible underlying genetic influence, whilst keeping in mind the dietary habits of the family

    Association of CYP2C19*2 and *17 genetic variants with hypertension in Pakistani population

    Get PDF
    Purpose: To investigate the association of *2 and *17 single nucleotide polymorphisms (SNPs) of CYP2C19 gene with hypertension in Pakistani population. Methods: The study was conducted on 527 hypertensive patients and 530 unrelated healthy controls from selected regions of Pakistan. DNA was extracted from leukocytes and all patients and controls were genotyped for two SNPs (rs4244285 and rs12248560) of CYP2C19 gene by allele specific polymerase chain reaction (AS-PCR). Results: Multi-allelic polymorphism in CYP2C19 identified four distinct phenotypes known as ultra-rapid metabolizer (UM), extensive metabolizer (EM), intermediate metabolizer (IM) and poor metabolizer (PM) in hypertensive patients and controls. For CYP2C19*2 polymorphisms, overall wild type and mutant allele frequency were 75 and 25 % in hypertensive patients, and 64.2 and 35.8 % in controls. For CYP2C19*17 polymorphisms, the overall wild type and mutant allele frequency were 66.6 and 33.4 % in hypertensive patients and 75.6 % and 24.4 % in controls. Significant difference in allele frequencies for CYP2C19*2 and *17 was demonstrated between hypertensive and non-hypertensive subjects. Conclusion: To the best of our knowledge, this is the first report on CYP2C19 frequencies in hypertensive Pakistani patients. The finds should help clinicians to determine a suitable optimal dosage of some drugs in order to reduce side effects

    A source of resistance against yellow mosaic disease in soybeans correlates with a novel mutation in a resistance gene

    Get PDF
    Yellow mosaic disease (YMD) is one of the major devastating constraints to soybean production in Pakistan. In the present study, we report the identification of resistant soybean germplasm and a novel mutation linked with disease susceptibility. Diverse soybean germplasm were screened to identify YMD-resistant lines under natural field conditions during 2016-2020. The severity of YMD was recorded based on symptoms and was grouped according to the disease rating scale, which ranges from 0 to 5, and named as highly resistant (HR), moderately resistant (MR), resistant (R), susceptible (S), moderately susceptible (MS), and highly susceptible (HS), respectively. A HR plant named “NBG-SG Soybean” was identified, which showed stable resistance for 5 years (2016-2020) at the experimental field of the National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan, a location that is a hot spot area for virus infection. HS soybean germplasm were also identified as NBG-47 (PI628963), NBG-117 (PI548655), SPS-C1 (PI553045), SPS-C9 (PI639187), and cv. NARC-2021. The YMD adversely affected the yield and a significant difference was found in the potential yield of NBG-SG-soybean (3.46 ± 0.13a t/ha) with HS soybean germplasm NARC-2021 (0.44 ± 0.01c t/ha) and NBG-117 (1.12 ± 0.01d t/ha), respectively. The YMD incidence was also measured each year (2016-2020) and data showed a significant difference in the percent disease incidence in the year 2016 and 2018 and a decrease after 2019 when resistant lines were planted. The resistance in NBG-SG soybean was further confirmed by testing for an already known mutation (SNP at 149th position) for YMD in the Glyma.18G025100 gene of soybean. The susceptible soybean germplasm in the field was found positive for the said mutation. Moreover, an ortholog of the CYR-1 viral resistance gene from black gram was identified in soybean as Glyma.13G194500, which has a novel deletion (28bp/90bp) in the 5`UTR of susceptible germplasm. The characterized soybean lines from this study will assist in starting soybean breeding programs for YMD resistance. This is the first study regarding screening and molecular analysis of soybean germplasm for YMD resistance

    Indigenous Cadaveric Variations in Lung Fissures and Lobes

    No full text
    Introduction: Lung fissures are responsible for uniform expansion. These fissures may be complete, incomplete or absent causing lobar variation. A detailed knowledge of variations of classical and accessory fissures is necessary for proper pulmonary radiological interpretation. Patients benefit from accurate assessment of integrity of pulmonary fissures during cardiothoracic surgery as surgeons can perform segmental lung resections and lobectomies safely to have an uncomplicated perioperative outcome. So, the cadaveric study was done to note the morphological variation of the fissures of lung in Pakistan cadaveric population and compare it with the previous study. Aims & Objectives: To determine the frequency of variations in fissures and lobes of the lungs on cadaveric Pakistani population. Place and duration of study:   Anatomy Departments of KEMU and AIMC, Lahore. Duration of study was from 2020 to 2022 Material & Methods: An observational cross-sectional study was conducted on 160 cadaveric lung specimens from AIMC and KEMU Anatomy Departments. They were preserved in 10% formalin and were studied for morphological details of their lung lobes and fissures. Data was collected and graded using Craig and Walker classification. Data was analysed using SPSS 22 version. p value ? 0.05 was taken as significant Results: Out of 160, 77% of the left lung and 75% of the right lungs were normal. Among the variations, horizontal fissure had shown to be more variable as compared to oblique fissure .18% of the right-side specimens were shown to have incomplete horizontal fissures and in 4% of the specimen, they were totally absent. 15% of the left side specimen had incomplete oblique fissures whereas only 2% of the right-side specimen had incomplete oblique fissures. Accessory fissures were more common in the left side specimens as compared to the right-side specimens. Conclusion: Morphological variations do occur in normal population, and they must be kept in mind during radiological and surgical interventions

    Plant Virus-Derived Vectors for Plant Genome Engineering

    No full text
    Advances in genome engineering (GE) tools based on sequence-specific programmable nucleases have revolutionized precise genome editing in plants. However, only the traditional approaches are used to deliver these GE reagents, which mostly rely on Agrobacterium-mediated transformation or particle bombardment. These techniques have been successfully used for the past decades for the genetic engineering of plants with some limitations relating to lengthy time-taking protocols and transgenes integration-related regulatory concerns. Nevertheless, in the era of climate change, we require certain faster protocols for developing climate-smart resilient crops through GE to deal with global food security. Therefore, some alternative approaches are needed to robustly deliver the GE reagents. In this case, the plant viral vectors could be an excellent option for the delivery of GE reagents because they are efficient, effective, and precise. Additionally, these are autonomously replicating and considered as natural specialists for transient delivery. In the present review, we have discussed the potential use of these plant viral vectors for the efficient delivery of GE reagents. We have further described the different plant viral vectors, such as DNA and RNA viruses, which have been used as efficient gene targeting systems in model plants, and in other important crops including potato, tomato, wheat, and rice. The achievements gained so far in the use of viral vectors as a carrier for GE reagent delivery are depicted along with the benefits and limitations of each viral vector. Moreover, recent advances have been explored in employing viral vectors for GE and adapting this technology for future research

    Genome-Wide Analysis of WRKY Gene Family and Negative Regulation of <i>GhWRKY25</i> and <i>GhWRKY33</i> Reveal Their Role in Whitefly and Drought Stress Tolerance in Cotton

    No full text
    The WRKY transcription factor family is marked by its significant responsiveness to both biotic and abiotic plant stresses. In the present study, the WRKY family of Gossypium hirsutum has been identified and classified into three groups based on the number of conserved WRKY domains and the type of zinc finger motif. This classification is further validated by conserved domain and phylogenetic analysis. Two members of the WRKY family, WRKY25 and WRKY33, have been targeted through VIGS in G. hirsutum. VIGS-infiltrated plants were evaluated under drought stress and whitefly infestation. It was observed that GhWRKY33-downregulated plants showed a decrease in whitefly egg and nymph population, and GhWRKY33 was found to be a strong negative regulator of whitefly and drought stress, while GhWRKY25 was found to be a moderate negative regulator of whitefly and drought stress. As the targeted genes are transcription factors influencing the expression of other genes, the relative expression of other stress-responsive genes, namely MPK6, WRKY40, HSP, ERF1, and JAZ1, was also analyzed through qRT-PCR. It was found elevated in GhWRKY33-downregulated plants, while GhWRKY25-downregulated plants through VIGS showed the elevated expression of ERF1 and WRKY40, a slightly increased expression of HSP, and a lower expression level of MPK6. Overall, this study provides an important insight into the WRKY TF family and the role of two WRKY TFs in G. hirsutum under drought stress and whitefly infestation. The findings will help to develop crops resilient to drought and whitefly stress

    Assessment of Genomic Diversity and Selective Pressures in Crossbred Dairy Cattle of Pakistan

    No full text
    Improving the low productivity levels of native cattle breeds in smallholder farming systems is a pressing concern in Pakistan. Crossbreeding high milk-yielding holstein friesian (HF) breed with the adaptability and heat tolerance of Sahiwal cattle has resulted in offspring that are well-suited to local conditions and exhibit improved milk yield. The exploration of how desirable traits in crossbred dairy cattle are selected has not yet been investigated. This study aims to provide the first overview of the selective pressures on the genome of crossbred dairy cattle in Pakistan. A total of eighty-one crossbred, thirty-two HF and twenty-four Sahiwal cattle were genotyped, and additional SNP genotype data for HF and Sahiwal were collected from a public database to equate the sample size in each group. Within-breed selection signatures in crossbreds were investigated using the integrated haplotype score. Crossbreds were also compared to each of their parental breeds to discover between-population signatures of selection using two approaches: cross-population extended haplotype homozygosity and fixation index. We identified several overlapping genes associated with production, immunity, and adaptation traits, including U6, TMEM41B, B4GALT7, 5S_rRNA, RBM27, POU4F3, NSD1, PRELID1, RGS14, SLC34A1, TMED9, B4GALT7, OR2AK3, OR2T16, OR2T60, OR2L3, and CTNNA1. Our results suggest that regions responsible for milk traits have generally experienced stronger selective pressure than others.</p

    Transcriptomic analysis of cultivated cotton Gossypium hirsutum provides insights into host responses upon whitefly-mediated transmission of cotton leaf curl disease

    Full text link
    Cotton is a commercial and economically important crop that generates billions of dollars in annual revenue worldwide. However, cotton yield is affected by a sap-sucking insect Bemisia tabaci (whitefly), and whitefly-borne cotton leaf curl disease (CLCuD). The causative agent of devastating CLCuD is led by the viruses belonging to the genus Begomovirus (family Geminiviridae), collectively called cotton leaf curl viruses. Unfortunately, the extensively cultivated cotton (Gossypium hirsutum) species are highly susceptible and vulnerable to CLCuD. Yet, the concomitant influence of whitefly and CLCuD on the susceptible G. hirsutum transcriptome has not been interpreted. In the present study we have employed an RNA Sequencing (RNA-Seq) transcriptomics approach to explore the differential gene expression in susceptible G. hirsutum variety upon infection with viruliferous whiteflies. Comparative RNA-Seq of control and CLCuD infected plants was done using Illumina HiSeq 2500. This study yielded 468 differentially expressed genes (DEGs). Among them, we identified 220 up and 248 downregulated DEGs involved in disease responses and pathogen defense. We selected ten genes for downstream RT-qPCR analyses on two cultivars, Karishma and MNH 786 that are susceptible to CLCuD. We observed a similar expression pattern of these genes in both susceptible cultivars that was also consistent with our transcriptome data further implying a wider application of our global transcription study on host susceptibility to CLCuD. We next performed weighted gene co-expression network analysis that revealed six modules. This analysis also identified highly co-expressed genes as well as 55 hub genes that co-express with >/= 50 genes. Intriguingly, most of these hub genes are shown to be downregulated and enriched in cellular processes. Under-expression of such highly co-expressed genes suggests their roles in favoring the virus and enhancing plant susceptibility to CLCuD. We also discuss the potential mechanisms governing the establishment of disease susceptibility. Overall, our study provides a comprehensive differential gene expression analysis of G. hirsutum under whitefly-mediated CLCuD infection. This vital study will advance the understanding of simultaneous effect of whitefly and virus on their host and aid in identifying important G. hirsutum genes which intricate in its susceptibility to CLCuD

    Whole-Genome Resequencing Deciphers New Insight Into Genetic Diversity and Signatures of Resistance in Cultivated Cotton Gossypium hirsutum

    No full text
    Cotton is an important crop that produces fiber and cottonseed oil for the textile and oil industry. However, cotton leaf curl virus disease (CLCuD) stress is limiting its yield in several Asian countries. In this study, we have sequenced Mac7 accession, a Gossypium hirsutum resistance source against several biotic stresses. By aligning with the Gossypium hirsutum (AD1) 'TM-1' genome, a total of 4.7 and 1.2 million SNPs and InDels were identified in the Mac7 genome. The gene ontology and metabolic pathway enrichment indicated SNPs and InDels role in nucleotide bindings, secondary metabolite synthesis, and plant-pathogen interaction pathways. Furthermore, the RNA-seq data in different tissues and qPCR expression profiling under CLCuD provided individual gene roles in resistant and susceptible accessions. Interestingly, the differential NLR genes demonstrated higher expression in resistant plants rather than in susceptible plants expression. The current resequencing results may provide primary data to identify DNA resistance markers which will be helpful in marker-assisted breeding for development of Mac7-derived resistance lines. Graphical Abstract: [Figure not available: see fulltext.

    Transcriptomics reveals multiple resistance mechanisms against cotton leaf curl disease in a naturally immune cotton species, Gossypium arboreum.

    Full text link
    Cotton leaf curl disease (CLCuD), caused by cotton leaf curl viruses (CLCuVs), is among the most devastating diseases in cotton. While the widely cultivated cotton species Gossypium hirsutum is generally susceptible, the diploid species G. arboreum is a natural source for resistance against CLCuD. However, the influence of CLCuD on the G. arboreum transcriptome and the interaction of CLCuD with G. arboreum remains to be elucidated. Here we have used an RNA-Seq based study to analyze differential gene expression in G. arboreum under CLCuD infestation. G. arboreum plants were infested by graft inoculation using a CLCuD infected scion of G. hirsutum. CLCuD infested asymptomatic and symptomatic plants were analyzed with RNA-seq using an Illumina HiSeq. 2500. Data analysis revealed 1062 differentially expressed genes (DEGs) in G. arboreum. We selected 17 genes for qPCR to validate RNA-Seq data. We identified several genes involved in disease resistance and pathogen defense. Furthermore, a weighted gene co-expression network was constructed from the RNA-Seq dataset that indicated 50 hub genes, most of which are involved in transport processes and might have a role in the defense response of G. arboreum against CLCuD. This fundamental study will improve the understanding of virus-host interaction and identification of important genes involved in G. arboreum tolerance against CLCuD
    corecore