14 research outputs found

    Kinase-independent function of checkpoint kinase 1 (Chk1) in the replication of damaged DNA

    Get PDF
    The checkpoint kinases Chk1 and ATR are broadly known for their role in the response to the accumulation of damaged DNA. Because Chk1 activation requires its phosphorylation by ATR, it is expected that ATR or Chk1 down-regulation should cause similar alterations in the signals triggered by DNA lesions. Intriguingly, we found that Chk1, but not ATR, promotes the progression of replication forks after UV irradiation. Strikingly, this role of Chk1 is independent of its kinase-domain and of its partnership with Claspin. Instead, we demonstrate that the ability of Chk1 to promote replication fork progression on damaged DNA templates relies on its recently identified proliferating cell nuclear antigen-interacting motif, which is required for its release from chromatin after DNA damage. Also supporting the importance of Chk1 release, a histone H2B-Chk1 chimera, which is permanently immobilized in chromatin, is unable to promote the replication of damaged DNA. Moreover, inefficient chromatin dissociation of Chk1 impairs the efficient recruitment of the specialized DNA polymerase η (pol η) to replication-associated foci after UV. Given the critical role of pol η during translesion DNA synthesis (TLS), these findings unveil an unforeseen facet of the regulation by Chk1 of DNA replication. This kinase-independent role of Chk1 is exclusively associated to the maintenance of active replication forks after UV irradiation in a manner in which Chk1 release prompts TLS to avoid replication stalling.Fil: Speroni, Juliana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Federico, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Mansilla, Sabrina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Soria, Ramiro Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    UV-triggered p21 degradation facilitates damaged-DNA replication and preserves genomic stability

    Get PDF
    Although many genotoxic treatments upregulate the cyclin kinase inhibitor p21, agents such as UV irradiation trigger p21 degradation. This suggests that p21 blocks a process relevant for the cellular response to UV. Here, we show that forced p21 stabilization after UV strongly impairs damaged-DNA replication, which is associated with permanent deficiencies in the recruitment of DNA polymerases from the Y family involved in translesion DNA synthesis), with the accumulation of DNA damage markers and increased genomic instability. Remarkably, such noxious effects disappear when disrupting the proliferating cell nuclear antigen (PCNA) interacting motif of stable p21, thus suggesting that the release of PCNA from p21 interaction is sufficient to allow the recruitment to PCNA of partners (such as Y polymerases) relevant for the UV response. Expression of degradable p21 only transiently delays early replication events and Y polymerase recruitment after UV irradiation. These temporary defects disappear in a manner that correlates with p21 degradation with no detectable consequences on later replication events or genomic stability. Together, our findings suggest that the biological role of UV-triggered p21 degradation is to prevent replication defects by facilitating the tolerance of UV-induced DNA lesions.Fil: Mansilla, Sabrina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires(i); Argentina; Fundación Instituto Leloir; Argentina;Fil: Soria, Gastón. Fundación Instituto Leloir. Laboratorio de Ciclo Celular y Estabilidad Genómica; Argentina;Fil: Vallerga, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires(i); Argentina; Fundación Instituto Leloir. Laboratorio de Ciclo Celular y Estabilidad Genómica; Argentina;Fil: Habif, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires(i); Argentina; Fundación Instituto Leloir. Laboratorio de Ciclo Celular y Estabilidad Genómica; Argentina;Fil: Martínez López, Wilner. Fundación Instituto Leloir. Laboratorio de Ciclo Celular y Estabilidad Genómica; Argentina; Ministerio de Educación y Cultura. Instituto de Investigaciones Biológicas Clemente Estable; Uruguay;Fil: Prives, Carol. Columbia University. Department of Biological Sciences; Estados Unidos de América;Fil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires(i); Argentina

    CDK-Independent and PCNA-Dependent Functions of p21 in DNA Replication

    Get PDF
    p21Waf/CIP1 is a small unstructured protein that binds and inactivates cyclin-dependent kinases (CDKs). To this end, p21 levels increase following the activation of the p53 tumor suppressor. CDK inhibition by p21 triggers cell-cycle arrest in the G1 and G2 phases of the cell cycle. In the absence of exogenous insults causing replication stress, only residual p21 levels are prevalent that are insufficient to inhibit CDKs. However, research from different laboratories has demonstrated that these residual p21 levels in the S phase control DNA replication speed and origin firing to preserve genomic stability. Such an S-phase function of p21 depends fully on its ability to displace partners from chromatin-bound proliferating cell nuclear antigen (PCNA). Vice versa, PCNA also regulates p21 by preventing its upregulation in the S phase, even in the context of robust p21 induction by γ irradiation. Such a tight regulation of p21 in the S phase unveils the potential that CDK-independent functions of p21 may have for the improvement of cancer treatments.Fil: Mansilla, Sabrina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: de la Vega Páez, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Calzetta, Nicolás Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Siri, Sebastian Omar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentin

    AKT inhibition impairs PCNA ubiquitylation and triggers synthetic lethality in homologous recombination-deficient cells submitted to replication stress

    Get PDF
    Translesion DNA synthesis (TLS) and homologous recombination (HR) cooperate during S-phase to safeguard replication forks integrity. Thus, the inhibition of TLS becomes a promising point of therapeutic intervention in HR-deficient cancers, where TLS impairment might trigger synthetic lethality (SL). The main limitation to test this hypothesis is the current lack of selective pharmacological inhibitors of TLS. Herein, we developed a miniaturized screening assay to identify inhibitors of PCNA ubiquitylation, a key post-translational modification required for efficient TLS activation. After screening a library of 627 kinase inhibitors, we found that targeting the pro-survival kinase AKT leads to strong impairment of PCNA ubiquitylation. Mechanistically, we found that AKT-mediated modulation of Proliferating Cell Nuclear Antigen (PCNA) ubiquitylation after UV requires the upstream activity of DNA PKcs, without affecting PCNA ubiquitylation levels in unperturbed cells. Moreover, we confirmed that persistent AKT inhibition blocks the recruitment of TLS polymerases to sites of DNA damage and impairs DNA replication forks processivity after UV irradiation, leading to increased DNA replication stress and cell death. Remarkably, when we compared the differential survival of HR-proficient vs HR-deficient cells, we found that the combination of UV irradiation and AKT inhibition leads to robust SL induction in HR-deficient cells. We link this phenotype to AKT ability to inhibit PCNA ubiquitylation, since the targeted knockdown of PCNA E3-ligase (RAD18) and a non-ubiquitylable (PCNA K164R) knock-in model recapitulate the observed SL induction. Collectively, this work identifies AKT as a novel regulator of PCNA ubiquitylation and provides the proof-of-concept of inhibiting TLS as a therapeutic approach to selectively kill HR-deficient cells submitted to replication stress.Fil: Villafañez, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: García, Iris Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Carbajosa González, Sofía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Pansa, Maria Florencia. Universidad Nacional de Río Cuarto. Facultad de Ciencias Exactas Fisicoquímicas y Naturales. Departamento de Biología Molecular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mansilla, Sabrina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Llorens de Los Ríos, María Candelaria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Angiolini, Virginia Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones y Transferencia de Villa María. Universidad Nacional de Villa María. Centro de Investigaciones y Transferencia de Villa María; ArgentinaFil: Guantay, Maria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Jacobs, Heinz. Tumor Biology And Immunology-netherlands Cancer Institu; Países BajosFil: Madauss, Kevin P.. Glaxosmithkline; Reino UnidoFil: Gloger, Israel. Glaxosmithkline; Reino UnidoFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Bocco, Jose Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Soria, Ramiro Gaston. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; Argentin

    UV-triggered p21 degradation facilitates damaged-DNA replication and preserves genomic stability

    No full text
    Mientras que el incremento en los niveles del inhibidor de quinasas dependiente de ciclinas p21 ha sido reportado extensamente en respuesta a variados tratamientos genotóxicos, lo opuesto ocurre en respuesta a la irradiación UVC en donde p21 disminuye sus niveles de expresión como consecuencia de una proteólisis. Esta degradación sugiere que p21 podría estar reprimiendo algún proceso relevante para la respuesta celular a la irradiación UVC. En este trabajo demostramos que la estabilización forzada de p21 luego de luz UV bloquea la replicación sobre ADN lesionado. Este impedimento está relacionado con un defecto en el reclutamiento de polimerasas especializadas necesarias para replicar sobre ADN dañado, que forman parte de un proceso conocido como Síntesis de ADN por Translesión, TLS, (del inglés Translesion DNA Synthesis). Los defectos observados en la replicación de ADN lesionado correlacionan con un aumento en los marcadores de estrés replicativo, inestabilidad genómica y aumento de la muerte celular. Interesantemente estos efectos deletéreos desaparecen si se remueve el sitio de unión a PCNA, (PIP box) de p21, sugiriendo que la perdida de interacción entre p21 y PCNA es suficiente como para permitir el reclutamiento de proteínas de unión a PCNA (como las polimerasas especializadas) relevantes para la respuesta a irradiación UV. Por otro lado la expresión de una construcción degradable de p21 tuvo un efecto transiente sobre los eventos de replicación temprana y sobre el reclutamiento de las polimerasa de TLS en respuesta a irradiación UV. Estos defectos temporarios desaparecen en correlación con la degradación de p21, sin observarse consecuencias sobre eventos de replicación tardía o sobre la estabilidad genómica. En conjunto, nuestros datos sugieren que la función biológica asociada a la degradación de p21 en respuesta a irradiación UV es la de promover la replicación sobre ADN lesionado a través de una correcta y efectiva activación de los eventos de TLS.While many genotoxic treatments upregulate the ciclin kinase inhibitor p21, agents such as UV irradiation trigger p21 degradation. This suggests that p21 blocks a process relevant for the cellular response to UV. Here we show that forced p21 stabilization after UV strongly impairs damaged-DNA replication, which is associated with permanent deficiencies in the recruitment of DNA polymerases from the Y family (involved in translesion DNA synthesis -TLS), with the accumulation of DNA damage markers and increased genomic instability. Remarkably, such noxious effects disappear when disrupting the PCNA interacting motif (PIP) of stable p21, thus suggesting that the release of PCNA from p21 interaction is sufficient to allow the recruitment to PCNA of partners (such as Y polymerases) relevant for the UV response. Expression of degradable p21 only transiently delays early replication events and Y polymerase recruitment after UV irradiation. These temporary defects disappear in a manner that correlates with p21 degradation with no detectable consequences on later replication events or genomic stability. Together, our findings suggest that the biological role of UV- triggered p21 degradation is to prevent replication defects by facilitating the tolerance of UV-induced DNA lesions.Fil:Mansilla, Sabrina Florencia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina

    The identification of translesion DNA synthesis regulators: inhibitors in the spotlight

    Get PDF
    Over the past half-century, we have become increasingly aware of the ubiquity ofDNA damage. Under the constant exposure to exogenous and endogenous genomic stress, cells must attempt to replicate damaged DNA. The encounter of replication forks with DNA lesions triggers several cellular responses, including the activation of translesion DNA synthesis (TLS), which largely depends upon specialized DNA polymerases with flexible active sites capable of accommodating bulky DNA lesions. A detrimental aspect of TLS is its intrinsic mutagenic nature, and thus the activity of the TLS polymerases must ideally be restricted to synthesis on damaged DNA templates. Despite their potential clinical importance in chemotherapy, TLS inhibitors have been difficult to identify since a direct assay designed to quantify genomic TLS events is still unavailable. Herein we discuss the methods that have been used to validate TLS inhibitors such as USP1, p21 and Spartan, highlighting research that has revealed their contribution to the control of DNA synthesis on damaged and undamaged templates.Fil: Bertolin, Agustina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Mansilla, Sabrina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentin

    Rad51 prevents Mre11-dependent degradation and excessive primpol-mediated elongation of nascent DNA after UV irradiation

    No full text
    After UV irradiation, DNA polymerases specialized in translesion DNA synthesis (TLS) aid DNA replication. However, it is unclear whether other mechanisms also facilitate the elongation of UV-damaged DNA. We wondered if Rad51 recombinase (Rad51), a factor that escorts replication forks, aids replication across UV lesions. We found that depletion of Rad51 impairs S-phase progression and increases cell death after UV irradiation. Interestingly, Rad51 and the TLS polymerase polη modulate the elongation of nascent DNA in different ways, suggesting that DNA elongation after UV irradiation does not exclusively rely on TLS events. In particular, Rad51 protects the DNA synthesized immediately before UV irradiation from degradation and avoids excessive elongation of nascent DNA after UV irradiation. In Rad51-depleted samples, the degradation of DNA was limited to the first minutes after UV irradiation and required the exonuclease activity of the double strand break repair nuclease (Mre11). The persistent dysregulation of nascent DNA elongation after Rad51 knockdown required Mre11, but not its exonuclease activity, and PrimPol, a DNA polymerase with primase activity. By showing a crucial contribution of Rad51 to the synthesis of nascent DNA, our results reveal an unanticipated complexity in the regulation of DNA elongation across UV-damaged templates.Fil: Vallerga, María Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Mansilla, Sabrina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Federico, Maria Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Bertolin, Agustina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; ArgentinaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentin

    DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression

    No full text
    DNA damage tolerance facilitates the progression of replication forks that have encountered obstacles on the template strands. It involves either translesion DNA synthesis initiated by proliferating cell nuclear antigen monoubiquitination or less well-characterized fork reversal and template switch mechanisms. Herein, we characterize a novel tolerance pathway requiring the tumor suppressor p53, the translesion polymerase ι (POLι), the ubiquitin ligase Rad5-related helicase-like transcription factor (HLTF), and the SWI/SNF catalytic subunit (SNF2) translocase zinc finger ran-binding domain containing 3 (ZRANB3). This novel p53 activity is lost in the exonuclease-deficient but transcriptionally active p53(H115N) mutant. Wild-type p53, but not p53(H115N), associates with POLι in vivo. Strikingly, the concerted action of p53 and POLι decelerates nascent DNA elongation and promotes HLTF/ZRANB3-dependent recombination during unperturbed DNA replication. Particularly after cross-linker-induced replication stress, p53 and POLι also act together to promote meiotic recombination enzyme 11 (MRE11)-dependent accumulation of (phospho-)replication protein A (RPA)-coated ssDNA. These results implicate a direct role of p53 in the processing of replication forks encountering obstacles on the template strand. Our findings define an unprecedented function of p53 and POLι in the DNA damage response to endogenous or exogenous replication stress.Fil: Hampp, Stephanie. Universitat Ulm; AlemaniaFil: Kiessling, Tina. Universitat Ulm; AlemaniaFil: Buechle, Kerstin. Universitat Ulm; AlemaniaFil: Mansilla, Sabrina Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Thomale, Jürgen. Universitat Duisburg - Essen; AlemaniaFil: Rall, Melanie. Universitat Ulm; AlemaniaFil: Ahn, Jinwoo. Columbia University; Estados UnidosFil: Pospiech, Helmut. Leibniz Institute on Aging–Fritz Lipmann Institute; Alemania. University of Oulu; FinlandiaFil: Gottifredi, Vanesa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Wiesmüller, Lisa. Universitat Ulm; Alemani

    Native Cultivable Bacteria from the Blueberry Microbiome as Novel Potential Biocontrol Agents

    No full text
    Blueberry production is affected by fungal postharvest pathogens, including Botrytis cinerea and Alternaria alternata, the causative agents of gray mold disease and Alternaria rot, respectively. Biocontrol agents adapted to blueberries and local environments are not known to date. Here, we report on the search for and the identification of cultivable blueberry epiphytic bacteria with the potential to combat the aforementioned fungi. Native, blueberry-borne bacterial strains were isolated from a plantation in Tucumán, Argentina and classified based on 16S rRNA gene sequences. Antagonistic activities directed at B. cinerea and A. alternata were studied in vitro and in vivo. The 22 bacterial strains obtained could be attributed to eleven different genera: Rosenbergiella, Fictibacillus, Bacillus, Pseudomonas, Microbacterium, Asaia, Acinetobacter, Curtobacterium, Serratia, Sphingomonas and Xylophilus. Three strains displaying antagonistic impacts on the fungal pathogens were identified as Bacillus velezensis (BA3 and BA4) and Asaia spathodeae (BMEF1). These strains are candidates for biological control agents of local blueberry production and might provide a basis for the development of eco-friendly, sustainable alternatives to synthetic pesticides
    corecore